Sprague-Grundy定理(SG定理):
游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html进行进一步理解。
SG函数:
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
【实例】取石子问题
有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?
SG[0]=0,f[]={1,3,4},
x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;
x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;
x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;
x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;
x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;
以此类推.....
x 0 1 2 3 4 5 6 7 8....
SG[x] 0 1 0 1 2 3 2 0 1....
由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:
1、使用 数组f 将 可改变当前状态 的方式记录下来。
2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。
3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。
4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
代码实现:(相关例题HDU1536或者POJ2960两道例题一样)
int f[N + 1]; //游戏中石子的不同取法
int sg[1005];
bool mex[1005];//注意这里是bool类型 用int可能会超时
void get_sg(int n)
{
memset(sg, 0, sizeof(sg));
for(int i = 1; i <= 1000; i++) //代表不同情况下总石子的个数,即是sg[x]中的x
{
memset(mex, 0, sizeof(mex));//每次都要重置一下mex,booL型的数组占用字节少,所以Int型可能会超时
for(int j = 1; f[j] <= i && j <= N; j++)
{
mex[i - f[j]] = 1;
}
for(int j = 1;; j++)
{
if(!mex[j])
{
sg[i] = j;
break;
}
}
}
return ;
}
二:拓扑图求解SG函数(DFS)(相关例题:HDU1524)
vector<int>edge[1005];
int sg[1005];
int dfs_sg(int x)
{
if(sg[x] == -1)
return sg[x];
bool vis[1005];//bool型占用字节少
memset(vis, 0, sizeof(vis));
for(int i = 0; i < (int)edge[x].size(); i++)
{
vis[dfs_sg(edge[x][i])] = 1;
}
for(int i = 0;; i++)
{
if(!vis[i])
{
sg[x] = i;
break;
}
}
return sg[x];
}