zoukankan      html  css  js  c++  java
  • [算法整理]树上求LCA算法合集

    1#树上倍增

      以前写的博客:http://www.cnblogs.com/yyf0309/p/5972701.html

      预处理时间复杂度O(nlog2n),查询O(log2n),也不算难写。

    2#st表(RMQ)

      首先对一棵树进行dfs,得到欧拉序列,记录下每个节点的第一次出现位置。

      (先序遍历这棵树,访问到的节点(无论是从深的一层返回还是父节点访问)就加入到序列中,序列长度为2 * n - 1)

      根据欧拉序列神奇的特性,两个点第一次出现的位置之间,深度最小的一个点,是这两个点LCA(反正我是不会证明)。于是可以干什么呢?就建st表就行了。

      预处理时间复杂度O(2nlog2(2n) + n),查询时间复杂度O(log2n)。

    codevs 商务旅行:

      1 /**
      2  * codevs
      3  * Problem#1036
      4  * Accepted
      5  * Time:52ms
      6  * Memory:2736k
      7  */
      8 #include<iostream>
      9 #include<sstream>
     10 #include<cstdio>
     11 #include<cmath>
     12 #include<cstdlib>
     13 #include<cstring>
     14 #include<cctype>
     15 #include<queue>
     16 #include<set>
     17 #include<map>
     18 #include<stack>
     19 #include<vector>
     20 #include<algorithm>
     21 #ifndef    WIN32
     22 #define    AUTO "%I64d"
     23 #else
     24 #define AUTO "%lld"
     25 #endif
     26 using namespace std;
     27 typedef bool boolean;
     28 #define smin(a, b) (a) = min((a), (b))
     29 #define smax(a, b) (a) = max((a), (b))
     30 template<typename T>
     31 inline void readInteger(T& u){
     32     char x;
     33     int aFlag = 1;
     34     while(!isdigit((x = getchar())) && x != '-');
     35     if(x == '-'){
     36         aFlag = -1;
     37         x = getchar();
     38     }
     39     for(u = x - '0'; isdigit((x = getchar())); u = u * 10 + x - '0');
     40     ungetc(x, stdin);
     41     u *= aFlag;
     42 }
     43 
     44 template<typename T>class Matrix{
     45     public:
     46         T *p;
     47         int lines;
     48         int rows;
     49         Matrix():p(NULL){    }
     50         Matrix(int rows, int lines):lines(lines), rows(rows){
     51             p = new T[(lines * rows)];
     52         }
     53         T* operator [](int pos){
     54             return (p + pos * lines);
     55         }
     56 };
     57 #define matset(m, i, s) memset((m).p, (i), (s) * (m).lines * (m).rows)
     58 
     59 ///map template starts
     60 typedef class Edge{
     61     public:
     62         int end;
     63         int next;
     64         Edge(const int end = 0, const int next = 0):end(end), next(next){}
     65 }Edge;
     66 typedef class MapManager{
     67     public:
     68         int ce;
     69         int *h;
     70         Edge *edge;
     71         MapManager(){}
     72         MapManager(int points, int limit):ce(0){
     73             h = new int[(const int)(points + 1)];
     74             edge = new Edge[(const int)(limit + 1)];
     75             memset(h, 0, sizeof(int) * (points + 1));
     76         }
     77         inline void addEdge(int from, int end){
     78             edge[++ce] = Edge(end, h[from]);
     79             h[from] = ce;
     80         }
     81         inline void addDoubleEdge(int from, int end){
     82             addEdge(from, end);
     83             addEdge(end, from);
     84         }
     85         Edge& operator[] (int pos) {
     86             return edge[pos];
     87         }
     88 }MapManager;
     89 #define m_begin(g, i) (g).h[(i)]
     90 ///map template ends
     91 
     92 int n, m;
     93 int cnt = 0;
     94 Matrix<int> st;
     95 int* seq;
     96 int *dep, *app;
     97 MapManager g;
     98 const int P = 15;
     99 int *mlog2;
    100 
    101 inline void init() {
    102     readInteger(n);
    103     g = MapManager(n, 2  * n);
    104     seq = new int[(const int)(2 * n + 1)];
    105     dep = new int[(const int)(n + 1)];
    106     app = new int[(const int)(n + 1)];
    107     for(int i = 1, a, b; i < n; i++){
    108         readInteger(a);
    109         readInteger(b);
    110         g.addDoubleEdge(a, b);
    111     }
    112     dep[0] = 0;
    113 }
    114 
    115 void dfs(int node, int f) {
    116     seq[++cnt] = node;
    117     dep[node] = dep[f] + 1;
    118     app[node] = cnt;
    119     for(int i = m_begin(g, node); i != 0; i = g[i].next) {
    120         int& e = g[i].end;
    121         if(e == f)    continue;
    122         dfs(e, node);
    123         seq[++cnt] = node;
    124     }
    125 }
    126 
    127 inline void init_log() {
    128     mlog2 = new int[(const int)(2 * n + 1)];
    129     mlog2[1] = 0;
    130     for(int i = 2; i <= 2 * n; i++)
    131         mlog2[i] = mlog2[i / 2] + 1; 
    132 }
    133 
    134 inline void init_st() {
    135     init_log();
    136     st = Matrix<int>(cnt, mlog2[cnt] + 1);
    137     for(int i = 1; i <= cnt; i++)
    138         st[i][0] = seq[i];//,cout << i << " " << 0 << ":" << st[i][0] << endl;
    139     for(int j = 1; j <= P; j++)
    140         for(int i = 1; i + (1 << j) - 1 <= cnt; i++)
    141             st[i][j] = (dep[st[i][j - 1]] < dep[st[i + (1 << (j - 1))][j - 1]]) ? (st[i][j - 1]) : (st[i + (1 << (j - 1))][j - 1]);
    142 //            cout << i << " " << j << ":" << st[i][j] << endl;
    143 }
    144 
    145 inline int lca(int a, int b) {
    146     if(app[a] > app[b])    swap(a, b);
    147     int pos = mlog2[app[b] - app[a] + 1];
    148     int u = st[app[a]][pos];
    149     int v = st[app[b] - (1 << pos) + 1][pos];
    150     return (dep[u] > dep[v]) ? (v) : (u);
    151 }
    152 
    153 int last;
    154 int dist;
    155 inline void solve() {
    156     readInteger(m);
    157     readInteger(last);
    158     for(int i = 1, a; i < m; i++){
    159         readInteger(a);
    160         int l = lca(a, last);
    161         dist += dep[a] + dep[last] - 2 * dep[l];
    162         last = a;
    163     }
    164     printf("%d", dist);
    165 }
    166 
    167 int main() {
    168     init();
    169     dfs(1, 0);
    170     init_st();
    171     solve();
    172     return 0;
    173 }
    商务旅行(st表)

    3#Tarjan算法(离线算法)

      Tarjan需要一个并查集来辅助。

      算法思路大概是这样:

      init:初始化并查集,对查询建一个邻接链表,还是按照存边的方式,要双向的,再用一个数组记录第i个询问是否解决了。

      1.访问子树

      2.每次访问结束后将子树的并查集中的父节点指向当前节点。

      3.子树都访问完了后,开始处理以该节点为起点的询问,如果终点已经被访问过了并且没有被解决,那么这个点和终点的LCA是终点在并查集中的父节点,然后再记录是否解决的那个数组中把对应位置设上true。

      (画画图,还是很容易理解的)

      1 #include<iostream>
      2 #include<sstream>
      3 #include<cstdio>
      4 #include<cmath>
      5 #include<cstdlib>
      6 #include<cstring>
      7 #include<cctype>
      8 #include<queue>
      9 #include<set>
     10 #include<map>
     11 #include<stack>
     12 #include<vector>
     13 #include<algorithm>
     14 #ifndef    WIN32
     15 #define    AUTO "%I64d"
     16 #else
     17 #define AUTO "%lld"
     18 #endif
     19 using namespace std;
     20 typedef bool boolean;
     21 #define smin(a, b) (a) = min((a), (b))
     22 #define smax(a, b) (a) = max((a), (b))
     23 template<typename T>
     24 inline void readInteger(T& u){
     25     char x;
     26     int aFlag = 1;
     27     while(!isdigit((x = getchar())) && x != '-');
     28     if(x == '-'){
     29         aFlag = -1;
     30         x = getchar();
     31     }
     32     for(u = x - '0'; isdigit((x = getchar())); u = u * 10 + x - '0');
     33     ungetc(x, stdin);
     34     u *= aFlag;
     35 }
     36 
     37 typedef class Edge {
     38     public:
     39         int end;
     40         int next;
     41         int w;
     42         Edge(const int end = 0, const int next = 0, const int w = 0):end(end), next(next), w(w){        }
     43 }Edge;
     44 
     45 typedef class MapManager{
     46     public:
     47         int ce;
     48         Edge* edges;
     49         int* h;
     50         MapManager():ce(0), edges(NULL), h(NULL){        }
     51         MapManager(int points, int limit):ce(0){
     52             edges = new Edge[(const int)(limit + 1)];
     53             h = new int[(const int)(points + 1)];
     54             memset(h, 0, sizeof(int) * (points + 1));
     55         }
     56         inline void addEdge(int from, int end, int w){
     57             edges[++ce] = Edge(end, h[from], w);
     58             h[from] = ce;
     59         }
     60         inline void addDoubleEdge(int from, int end, int w){
     61             addEdge(from, end, w);
     62             addEdge(end, from, w);
     63         }
     64         Edge& operator [](int pos){
     65             return edges[pos];
     66         }
     67 }MapManager;
     68 #define m_begin(g, i) (g).h[(i)]
     69 
     70 typedef class union_found{
     71     public:
     72         int *f;
     73         union_found():f(NULL) {}
     74         union_found(int points) {
     75             f = new int[(const int)(points + 1)];
     76         }
     77         int find(int x) {
     78             if(f[x] != x)    return f[x] = find(f[x]);
     79             return f[x];
     80         }
     81         void unit(int fa, int so) {
     82             int ffa = find(fa);
     83             int fso = find(so);
     84             f[fso] = ffa;
     85         }
     86         int& operator [](int pos){
     87             return f[pos];
     88         }
     89 }union_found;
     90 
     91 int n, m;
     92 MapManager g;
     93 MapManager q;
     94 int *results;
     95 boolean* enable;
     96 int *querya, *queryb;
     97 union_found uf;
     98 boolean* visited;
     99 int* dist;
    100 
    101 inline void init(){
    102     readInteger(n);
    103     g = MapManager(n, 2 * n);
    104     for(int i = 1, a, b, c; i < n; i++){
    105         readInteger(a);
    106         readInteger(b);
    107         readInteger(c);
    108         g.addDoubleEdge(a, b, c);
    109     }
    110     readInteger(m);
    111     q = MapManager(n, 2 * m);
    112     querya = new int[(const int)(m + 1)];
    113     queryb = new int[(const int)(m + 1)];
    114     results = new int[(const int)(m + 1)];
    115     enable = new boolean[(const int)(m + 1)];
    116     dist = new int[(const int)(n + 1)];
    117     uf = union_found(n);
    118     visited = new boolean[(const int)(n + 1)];
    119     memset(visited, false, sizeof(boolean) * (n + 1));
    120     memset(enable, true, sizeof(boolean) * (m + 1));
    121     for(int i = 1; i <= m; i++){
    122         readInteger(querya[i]);
    123         readInteger(queryb[i]);
    124         q.addDoubleEdge(querya[i], queryb[i], i);
    125     }
    126     dist[1] = 0;
    127 }
    128 
    129 void tarjan(int node, int f){
    130     uf[node] = node;
    131     visited[node] = true;
    132     for(int i = m_begin(g, node); i != 0; i = g[i].next){
    133         int& e = g[i].end;
    134         if(e == f)    continue;
    135         dist[e] = dist[node] + g[i].w;
    136         tarjan(e, node);
    137         uf[e] = node;
    138     }
    139     for(int i = m_begin(q, node); i != 0; i = q[i].next) {
    140         int& e = q[i].end;
    141         if(visited[e] && enable[q[i].w]){
    142             int lca = uf.find(e);
    143             results[q[i].w] = lca;
    144             enable[q[i].w] = false;
    145         }
    146     }
    147 }
    148 
    149 inline void solve(){
    150     tarjan(1, 0);
    151     for(int i = 1; i <= m; i++){
    152         int dis = dist[querya[i]] + dist[queryb[i]] - 2 * dist[results[i]];
    153         printf("%d
    ", dis);
    154     }
    155 }
    156 
    157 int main(){
    158     init();
    159     solve();
    160     return 0;
    161 }
    Tajan

    4#树链剖分

      详见:http://www.cnblogs.com/yyf0309/p/6344982.html

      树链剖分的空间复杂度比上面任何一种方法都要优,所以当空间很紧的时候(当然,我相信出题人不会那么坑人)是不错的选择。

  • 相关阅读:
    SQL SERVER 查看sql语句性能与执行时间
    SQL SERVER 一组数据按规律横着放置,少则补空,如人员按一进一出的规律,进出为一组,缺少的补null
    SQL SERVER 子查询使用Order By;按In排序
    SQL SERVER 字符拆分列为多行
    SQL SERVER 字符合并多行为一列
    SQL SERVER pivot(行转列),unpivot(列转行)
    ASP.NET ViewState详解
    数字签名
    ASP.NET Form身份验证方式详解
    细说进程、应用程序域与上下文之间的关系
  • 原文地址:https://www.cnblogs.com/yyf0309/p/6341463.html
Copyright © 2011-2022 走看看