zoukankan      html  css  js  c++  java
  • poj 3233 Matrix Power Series

    Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

    Input

      The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

    Output

      Output the elements of S modulo m in the same way as A is given.

    Sample Input

    2 2 4
    0 1
    1 1

    Sample Output

    1 2
    2 3

      这道题直接暴力呢。。$Oleft(n^{3}k ight)$的时间复杂度,必死无疑。所以只能另寻出路,注意到矩阵满足分配律

    矩阵乘法的右分配律 若$A$和$B$皆为$n$行$p$列的矩阵,$C$为$p$行$m$列的矩阵,则有

    $(A + B)C = AB + AC$

      左分配律差不多(因为矩阵乘法不满足交换律,所以矩阵乘法的分配律分为左分配律和右分配律)

      证明就水水的写一下

      对于$A + B$,我们有$left(A + B ight )_{ij} = A_{ij} + B_{ij}$

      那么

    $left[left(A + B ight )C ight ]_{ij}\=sum_{i = 1}^{p}left(A + B ight )_{ip}C_{pj}\=sum_{i = 1}^{p}A_{ip}C_{pj} + sum_{i = 1}^{p}B_{ip}C_{pj}\=left(AC + BC ight )_{ij}$

      所以$(A + B)C = AB + AC$

      因为有了分配律这个神奇东西,现在计算$A + A^{2} + cdots + A^{6}$的和,就等价于$left(A + A^{2} + A^{3} ight ) + left(A + A^{2} + A^{3} ight )A^{3}$

      现在设$fleft(n ight ) = sum_{i = 1}^{n}A^{i}$

      那么有

    $fleft ( n ight )=left{egin{matrix}A left(n = 1 ight )\fleft(n - 1 ight ) + A^{n} left(2 mid n ight ) \ fleft(frac{n}{2} ight) left(I + A^{frac{n}{2}} ight ) left(2 mid n ight )  end{matrix} ight.$

      时间复杂度是$Oleft(n^{3}log^{2}k ight )$,但是如果代码写得比较丑就有TLE的风险,可以考虑一下以下优化

    1. 不要没事就作无用的初始化,很耗时间]
    2. 降低取模次数
    3. 适当地使用取模优化
    4. 减少无用的内存拷贝的次数

    Code

      1 /**
      2  * poj
      3  * Problem#3233
      4  * Accepted
      5  * Time:2266ms
      6  * Memory:3892k 
      7  */
      8 #include<iostream>
      9 #include<cstdio>
     10 #include<cctype>
     11 #include<cstring>
     12 #include<cstdlib>
     13 #include<fstream>
     14 #include<sstream>
     15 #include<algorithm>
     16 #include<map>
     17 #include<set>
     18 #include<queue>
     19 #include<vector>
     20 #include<stack>
     21 using namespace std;
     22 typedef bool boolean;
     23 #define INF 0xfffffff
     24 #define smin(a, b) a = min(a, b)
     25 #define smax(a, b) a = max(a, b)
     26 template<typename T>
     27 inline void readInteger(T& u){
     28     char x;
     29     int aFlag = 1;
     30     while(!isdigit((x = getchar())) && x != '-');
     31     if(x == '-'){
     32         x = getchar();
     33         aFlag = -1;
     34     }
     35     for(u = x - '0'; isdigit((x = getchar())); u = (u << 1) + (u << 3) + x - '0');
     36     ungetc(x, stdin);
     37     u *= aFlag;
     38 }
     39 
     40 typedef class Matrix {
     41     public:
     42         int* p;
     43         int lines, cols;
     44         int moder;
     45         Matrix():p(NULL), lines(0), cols(0), moder(1)    {    } 
     46         Matrix(int lines, int cols, int moder):lines(lines), cols(cols), moder(moder) {
     47             p = new int[(lines * cols)];
     48         }
     49         
     50         int* operator [](int pos) {
     51             return p + pos * cols;
     52         }
     53         
     54         Matrix operator *(Matrix b) {
     55             Matrix res(lines, b.cols, moder);
     56             for(int i = 0; i < lines; i++) {
     57                 for(int j = 0; j < b.cols; j++) {
     58                     res[i][j] = 0;
     59                     for(int k = 0; k < cols; k++) {
     60                         (res[i][j] += (*this)[i][k] * b[k][j] % moder) %= moder;
     61                     }
     62                 }
     63             }
     64             return res;
     65         }
     66         
     67         Matrix operator +(Matrix b) {
     68             Matrix res(lines, cols, moder);
     69             for(int i = 0; i < lines; i++)
     70                 for(int j = 0; j < cols; j++)
     71                     res[i][j] = ((*this)[i][j] + b[i][j]) % moder;
     72             return res;
     73         }
     74 }Matrix;
     75 
     76 template<typename T>
     77 T pow(T a, int pos) {
     78     if(pos == 1)    return a;
     79     T temp = pow(a, pos / 2);
     80     if(pos & 1)    return temp * temp * a;
     81     return temp * temp;
     82 }
     83 
     84 int n, k, m;
     85 Matrix a;
     86 
     87 inline void init() {
     88     readInteger(n);
     89     readInteger(k);
     90     readInteger(m);
     91     a = Matrix(n, n, m);
     92     for(int i = 0; i < n; i++) {
     93         for(int j = 0; j < n; j++) {
     94             readInteger(a[i][j]);
     95             a[i][j] %= m;
     96         }
     97     }
     98 }
     99 
    100 template<typename T>
    101 T pow_sum(T a, int pos) {
    102     if(pos == 1)    return a;
    103     T temp = pow_sum(a, pos / 2);
    104     temp = temp + temp * pow(a, pos / 2);
    105     if(pos & 1)    return temp + pow(a, pos);
    106     return temp;
    107 }
    108 
    109 Matrix res;
    110 inline void solve() {
    111     res = pow_sum(a, k);
    112     for(int i = 0; i < n; i++) {
    113         for(int j = 0; j < n; j++) {
    114             printf("%d ", res[i][j]);
    115         }
    116         putchar('
    ');
    117     }
    118 }
    119 
    120 int main() {
    121     init();
    122     solve();
    123     return 0;
    124 }
  • 相关阅读:
    测试开发技术
    测试开发技术难题与解决
    .gitignore文件
    mysql 子查询 联结 组合查询
    DTL
    jquery 基础
    Django操作数据库
    git 进阶篇
    miniconda使用
    pycharm之django基本配置
  • 原文地址:https://www.cnblogs.com/yyf0309/p/6576035.html
Copyright © 2011-2022 走看看