zoukankan      html  css  js  c++  java
  • hdu 1394 Minimum Inversion Number

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.  
    For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:  
    a1, a2, ..., an-1, an (where m = 0 - the initial seqence)  

    a2, a3, ..., an, a1 (where m = 1) 

    a3, a4, ..., an, a1, a2 (where m = 2)  

    ...  

    an, a1, a2, ..., an-1 (where m = n-1)  
    You are asked to write a program to find the minimum inversion number out of the above sequences. 

    Input

    The input consists of a number of test cases. Each case consists of two lines:

    the first line contains a positive integer n (n <= 5000);

    the next line contains a permutation of the n integers from 0 to n-1. 

    Output

    For each case, output the minimum inversion number on a single line. 

    Sample Input

    10
    1 3 6 9 0 8 5 7 4 2

    Sample Output

    16

      题目大意 求循环排列最小逆序对数。

      老是刷cf,不做暑假作业估计会被教练鄙视,所以还是做做暑假作业。

      先用各种方法算出原始序列的逆序对数。

      显然你可直接算出把开头的一个数挪到序列后面增加的逆序对数。(后面有多少个比它大减去有多少个比它小)

      于是这道题就水完了。

    Code

      1 /**
      2  * hdu
      3  * Problem#1394
      4  * Accepted
      5  * Time: 62ms
      6  * Memory: 1680k
      7  */
      8 #include <iostream>
      9 #include <fstream>
     10 #include <sstream>
     11 #include <cstdio>
     12 #include <ctime>
     13 #include <cmath>
     14 #include <cctype>
     15 #include <cstring>
     16 #include <cstdlib>
     17 #include <algorithm>
     18 #include <map>
     19 #include <set>
     20 #include <list>
     21 #include <stack>
     22 #include <queue>
     23 #include <vector>
     24 #ifndef WIN32
     25 #define Auto "%lld"
     26 #else
     27 #define Auto "%I64d"
     28 #endif
     29 using namespace std;
     30 typedef bool boolean;
     31 const signed int inf = (signed)((1u << 31) - 1);
     32 const signed long long llf = (signed long long)((1ull << 61) - 1);
     33 const double eps = 1e-9;
     34 const int binary_limit = 256;
     35 #define smin(a, b) a = min(a, b)
     36 #define smax(a, b) a = max(a, b)
     37 #define max3(a, b, c) max(a, max(b, c))
     38 #define min3(a, b, c) min(a, min(b, c))
     39 template<typename T>
     40 inline boolean readInteger(T& u){
     41     char x;
     42     int aFlag = 1;
     43     while(!isdigit((x = getchar())) && x != '-' && x != -1);
     44     if(x == -1) {
     45         ungetc(x, stdin);    
     46         return false;
     47     }
     48     if(x == '-'){
     49         x = getchar();
     50         aFlag = -1;
     51     }
     52     for(u = x - '0'; isdigit((x = getchar())); u = (u << 1) + (u << 3) + x - '0');
     53     ungetc(x, stdin);
     54     u *= aFlag;
     55     return true;
     56 }
     57 
     58 #define lowbit(x) ((x) & (-x))
     59 
     60 typedef class IndexedTree {
     61     public:
     62         int* lis;
     63         int s;
     64         IndexedTree() {        }
     65         IndexedTree(int s):s(s) {
     66             lis    = new int[(s + 1)];
     67             memset(lis, 0, sizeof(int) * (s + 1));
     68         }
     69         
     70         inline void add(int idx, int val) {
     71             for(; idx <= s; idx += lowbit(idx))
     72                 lis[idx] += val;
     73         }
     74         
     75         inline int getSum(int idx) {
     76             int ret = 0;
     77             for(; idx; idx -= lowbit(idx))
     78                 ret += lis[idx];
     79             return ret;
     80         }
     81 }IndexedTree;
     82 
     83 int n;
     84 int* arr;
     85 inline boolean init() {
     86     if(!readInteger(n))    return false;
     87     arr = new int[(n + 1)];
     88     for(int i = 1; i <= n; i++)
     89         readInteger(arr[i]), arr[i] += 1;
     90     return true;
     91 }
     92 
     93 IndexedTree it;
     94 int ans, cmp;
     95 inline void solve() {
     96     ans = 10000000, cmp = 0;
     97     it = IndexedTree(n);
     98     for(int i = 1; i <= n; i++) {
     99         it.add(arr[i], 1);
    100 //        cout << 1;
    101         cmp += i - it.getSum(arr[i]);
    102     }
    103     ans = cmp;
    104     for(int i = 1; i < n; i++) {
    105         cmp -= arr[i] - 1, cmp += n - arr[i];
    106         smin(ans, cmp);
    107     }
    108     printf("%d
    ", ans);
    109 }
    110 
    111 inline void clear() {
    112     delete[] arr;
    113     delete[] it.lis;
    114 }
    115 
    116 int main() {
    117     while(init()) {
    118         solve();
    119         clear();
    120     }
    121     return 0;
    122 }
  • 相关阅读:
    运用VS制作安装包
    return的总结
    Swift UIAlertController、UISegmentedControl
    Swift 菊花、UIPageControl和UIProgressView
    Swift UITextField各种属性的设置
    Swift 发送邮件和发短信
    Swift GCD
    swift 定义枚举和结构体 及使用
    iOS怎么来实现关闭自动锁屏
    IOS开发 清空数组正确方法
  • 原文地址:https://www.cnblogs.com/yyf0309/p/7290796.html
Copyright © 2011-2022 走看看