zoukankan      html  css  js  c++  java
  • nor flash和nand flash的区别

    NOR和NAND是现在市场上两种主要的非易失闪存技术。Intel于1988年首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM一统天下的局面。紧接着,1989年,东芝公司发表了NAND flash结构,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。
    一、存储数据的原理
    两种闪存都是用三端器件作为存储单元,分别为源极、漏极和栅极,与场效应管的工作原理相同,主要是利用电场的效应来控制源极与漏极之间的通断,栅极的电流消耗极小,不同的是场效应管为单栅极结构,而FLASH为双栅极结构,在栅极与硅衬底之间增加了一个浮置栅极。
    浮置栅极是由氮化物夹在两层二氧化硅材料之间构成的,中间的氮化物就是可以存储电荷的电荷势阱。上下两层氧化物的厚度大于50埃,以避免发生击穿。
    二、浮栅的重放电
    向数据单元内写入数据的过程就是向电荷势阱注入电荷的过程,写入数据有两种技术,热电子注入(hot electron injection)和F-N隧道效应(Fowler Nordheim tunneling),前一种是通过源极给浮栅充电,后一种是通过硅基层给浮栅充电。NOR型FLASH通过热电子注入方式给浮栅充电,而NAND则通过 F-N隧道效应给浮栅充电。
    在写入新数据之前,必须先将原来的数据擦除,这点跟硬盘不同,也就是将浮栅的电荷放掉,两种FLASH都是通过F-N隧道效应放电。
    三、连接和编址方式
    两种FLASH具有相同的存储单元,工作原理也一样,为了缩短存取时间并不是对每个单元进行单独的存取操作,而是对一定数量的存取单元进行集体操作, NAND型FLASH各存储单元之间是串联的,而NOR型FLASH各单元之间是并联的;为了对全部的存储单元有效管理,必须对存储单元进行统一编址。
       NAND器件使用复用的I/O口存取数据,8个引脚分时用来传送控制、地址和数据信息。NAND的全部存储单元分为若干个块,每个块又分为若干个页,每个页是512byte,就是512个8位数,就是说每个页有512条位线,每条位线下有8个存储单元;所以NAND每次读取数据时都是制定块地址、页地址、列地址(列地址就是读的页内起始地址)。每页存储的数据正好跟硬盘的一个扇区存储的数据相同,这是设计时为了方便与磁盘进行数据交换而特意安排的,那么块就类似硬盘的簇;容量不同,块的数量不同,组成块的页的数量也不同。NAND FLASH的读写操作是以页为基本单位,写入数据也是首先在页面缓冲区内缓冲,数据首先写入这里,再写命令后,再统一写入页内,因此每次改写一个字节,都要重写整个页,因为它只支持页写,而且如果页内有未擦除的部分,则无法编程,在写入前必须保证页是空的。

    NOR的每个存储单元以并联的方式连接到位线,它带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。方便对每一位进行随机存取,它不需要驱动;具有专用的地址线,可以实现一次性的直接寻址;缩短了FLASH对处理器指令的执行时间。

    四、性能
    1、速度
    在写数据和擦除数据时,NAND由于支持整块擦写操作,所以速度比NOR要快得多,两者相差近千倍;读取时,由于NAND要先向芯片发送地址信息进行寻址才能开始读写数据,而它的地址信息包括块号、块内页号和页内字节号等部分,要顺序选择才能定位到要操作的字节;这样每进行一次数据访问需要经过三次寻址,至少要三个时钟周期。

    NOR FLASH的操作则是以字或字节为单位进行的,直接读取,所以读取数据时,NOR有明显优势。但擦除是扇区操作的。
    2、容量和成本
        NOR型FLASH的每个存储单元与位线相连,增加了芯片内位线的数量,不利于存储密度的提高。所以在面积和工艺相同的情况下,NAND型FLASH的容量比NOR要大得多,生产成本更低,也更容易生产大容量的芯片。

    NOR FLASH占据了容量为1~16MB闪存市场的大部分,而NAND flash只是用在8~128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储,NAND在CompactFlash、Secure Digital、PC Cards和MMC存储卡市场上所占份额最大。 
    3、易用性
        NAND FLASH的I/O端口采用复用的数据线和地址线,必须先通过寄存器串行地进行数据存取,各个产品或厂商对信号的定义不同,增加了应用的难度;在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。

    NOR FLASH有专用的地址引脚来寻址,较容易与其它芯片进行连接,另外还支持本地执行,应用程序可以直接在FLASH内部运行,可以简化产品设计。
    4、可靠性
        NAND FLASH相邻单元之间较易发生位翻转而导致坏块出现,而且是随机分布的,如果想在生产过程中消除坏块会导致成品率太低、性价比很差,所以在出厂前要在高温、高压条件下检测生产过程中产生的坏块,写入坏块标记,防止使用时向坏块写入数据;但在使用过程中还难免产生新的坏块,所以在使用的时候要配合 EDC/ECC(错误探测/错误更正)和BBM(坏块管理)等软件措施来保障数据的可靠性。坏块管理软件能够发现并更换一个读写失败的区块,将数据复制到一个有效的区块。
    5、耐久性
        FLASH由于写入和擦除数据时会导致介质的氧化降解,导致芯片老化,在这个方面NOR尤甚,所以并不适合频繁地擦写,NAND的擦写次数是100万次,而NOR只有10万次。。

    应用程序对NOR芯片操作以“字”为基本单位。为了方便对大容量NOR闪存的管理,通常将NOR闪存分成大小为128KB或者64KB的逻辑块,有时候块内还分成扇区。读写时需要同时指定逻辑块号和块内偏移。应用程序对NAND芯片操作是以“块”为基本单位。NAND闪存的块比较小,一般是8KB,然后每块又分成页,页的大小一般是512字节。要修改NAND芯片中一个字节,必须重写整个数据块。 
     
     2)NOR闪存是随机存储介质,用于数据量较小的场合;NAND闪存是连续存储介质,适合存放大的数据。 
     
     3) 由于NOR地址线和数据线分开,所以NOR芯片可以像SRAM一样连在数据线上。NOR芯片的使用也类似于通常的内存芯片,它的传输效率很高,可执行程序可以在芯片内执行( XI P, eXecute In Place),这样应用程序可以直接在flash闪存内运行,不必再把代码 读到系统RAM中。由于NOR的这个特点,嵌入式系统中经常将NOR芯片做启动芯片使用。而NAND共用地址和数据总线,需要额外联结一些控制的输入输出,所以直接将NAND芯片做启动芯片比较难。 
     
     4) N AN D闪存芯片因为共用地址和数据总线的原因,不允许对一个字节甚至一个块进行的数据清空,只能对一个固定大小的区域进行清零操作;而NOR芯片可以对字进行操作。所以在处理小数据量的I/O操作的时候的速度要快与NAND的速度。比如一块NOR芯片通 常写一个字需要10微秒,那么在32位总线上写512字节需要1280毫秒;而NAND闪存写512字节需要的时间包括:512×每字节50纳秒+10微秒的寻页时间+200微秒的片擦写时间=234微秒。 
     
     5)NAND闪存的容量比较大,目前最大容量己经达到8G字节。为了方便管理,NAND的存储空间使用了块和页两级存储体系,也就是说闪存的存储空间是二维的,比如K9F5608UOA闪存块的大小为16K,每页的大小是512字节,每页还16字节空闲区用来存放错误校验码空间(有时也称为out-of-band,OOB空间);在进行写操作的时候NAND闪存每次将一个字节的数据放入内部的缓存区,然后再发出“写指令”进行写操作。由于对NAND闪存的操作都是以块和页为单位的,所以在向NAND闪存进行大量数据的读写时,NAND的速度要快于NOR闪存。 
     
     6)NOR闪存的可靠性要高于NAND闪存,这主要是因为NOR型闪存的接口简单,数据操作少,位交换操作少,因此可靠性高,极少出现坏区块,因而一般用在对可靠性要求高的地方。相反的,NAND型闪存接口和操作均相对复杂,位交换操作也很多,关键性数据更是需安错误探测/错误更正〔EDC/ECC)算法来确保数据的完整性,因此出现问题的几率要大得多,坏区块也是不可避免的,而且由于坏区块是随机分布的,连纠错也无法做到。 
     
     7)NAND Flash一般地址线和数据线共用,对读写速度有一定影响;而NOR Flash闪存数据线和地址线分开,所以相对而言读写速度快一些。 
     
     NAND和NOR芯片的共性首先表现在向芯片中写数据必须先将芯片中对应的内容清空,然后再写入,也就是通常说的“先擦后写”。只不过NOR芯片只用擦写一个字,而NAND需要擦写整个块。其次,闪存擦写的次数都是有限的.当闪存的使用接近使用寿命的时候,经常会出现写操作失败;到达使用寿命时,闪存内部存放的数据虽然可以读,但是不能再进行写操作了所以为了防止上面问题的发生,不能对某个特定的区域反复进行写操作。通常NAND的可擦写次数高于NOR芯片,但是由于NAND通常是整块擦写,块内的页面中如果有一位失效整个块就会失效,而且由于擦写过程复杂,失败的概率相对较高,所以从整体上来说NOR的寿命较长。 
     
     另一个共性是闪存的读写操作不仅仅是一个物理操作,实际上在闪存上存放数据必须使用算法实现,这个模块一般在驱动程序的MTD' (Memory Technology Drivers)模块中或者在FTLZ (Flash Translation Layer)层内实现,具体算法和芯片的生产厂商以及芯片型号有关系。

    从使用角度来看,NOR闪存与NAND闪存是各有特点的:(1)NOR的存储密度低,所以存储一个字节的成本也较高,而NAND闪存的存储密度和存储容量均比较高;(2)NAND型闪存在擦、写文件(特别是连续的大文件)时速度非常快,非常适用于顺序读取的场合,而NOR的读取速度很快,在随机存取的应用中有良好的表现。               NOR与NAND各有所长,但两种优势无法在一个芯片上得到体现。所以,设计人员在选用芯片时,只能趋其利而避其害,依照使用目的和主要功能在两者之间进行适当的选择。

    一般的原则是:在大容量的多媒体应用中选用NAND型闪存,而在数据/程序存贮应用中选用NOR型闪存。根据这一原则,设计人员也可以把两种闪存芯片结合起来使用,用NOR芯片存储程序,用NAND芯片存储数据,使两种闪存的优势互补。事实上,这种聪明的设计早已普遍应用于手机、PocketPC、PDA及电子词典等设备中了。

          在选择存储解决方案时,设计师必须在多种因素之间进行权衡,以获得较高的性价比。以手机为例,采用支持XIP技术的NOR闪存能够直接运行OS,速度很快,既简化了设计,又降低了成本,所以许多手机都采用NOR+RAM的设计。NOR闪存的不足之处是存储密度较低,所以也有采用NAND+RAM的设计。对于这两种方案,很难说哪一种更好,因为我们不能离开具体的产品而从某一个方面单纯地去评价。追求小巧优雅的手机将需要NOR闪存支持;追求大存储容量的手机则将更多地选择NAND闪存;而同时追求功能和速度的手机则会采用NOR+NAND+RAM的设计,这种取长补短的设计能够发挥NOR和NAND各自的优势。

            除了速度、存储密度的因素,设计师在选择闪存芯片时,还需要考虑接口设计、即插即用设计和驱动程序等诸多问题,因为两种类型的闪存在上述几个方面也有很多的不同。譬如在驱动程序方面,NOR器件运行代码不需要任何的软件支持,而在NAND器件上进行同样操作时就需要存储技术驱动程序(MTD)的支持。虽然NAND和NOR器件在进行写入和擦除操作时都需要MTD,但对于NAND来说驱动程序的开发难度更大,因为NAND闪存的纠错和坏块处理功能都需要通过驱动程序来实现。

    使用性差异

    在使用性上体现出的差异也是与NOR和NAND自身的架构设计分不开的,首先在接口方面,NOR的设计有明显的传统闪存的特征,因此实际应用起来相对于NAND全新的复杂I/O设计要容易得多。而且,在使用NAND闪存时,必须先写入驱动程序,才能继续执行其他操作。

    其次,在可重复擦写的能力方面,NAND的每块可擦写次数在10万至100万次之间,NOR则只是它的1/10,而且NAND的每个擦除块的容量也只有NOR的1/8至1/2,这就表明,每个块的擦写的频率要少于NOR闪存,从而有助于延长使用寿命。在数据的保存时间上,两者都差不多,为10年的水平。

    不过,由于串联的架构,NAND的晶体管之间更容易造成影响,使逻辑0变成逻辑1,并且也很难发现出问题的晶体管,这种现象可称为位翻转(Bit-Flipping),这就需要动用EDC/ECC(错误检测码/错误修正码)来进行校正,这方面的问题NOR则较少出现。

    另外,NAND在使用中还存在着坏块管理的问题,在NAND闪存中,由于坏块是随机分布的,因此需要进行扫描并将坏块打上标记,就像对付硬盘中的坏扇区一样。目前的产品中,可最多允许出现80个坏块。坏块的存在使得向NAND闪存写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND闪存上自始至终都必须进行虚拟映射。

    在软件支持程度方面,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。

    在NOR闪存上运行代码不需要任何的软件支持,在NAND闪存上进行同样操作时,通常需要驱动程序,也就是内存技术驱动程序(MTD),NAND和NOR闪存在进行写入和擦除操作时都需要MTD。

    使用NOR闪存时所需要的MTD要相对少一些,许多厂商都提供用于NOR闪存的更高级软件,这其中包括M-System的TrueFFS驱动,该驱动被Wind River System、Microsoft、QNX Software System、Symbian和Intel等厂商所采用。

    一、NAND flash和NOR flash的性能比较
    1、NOR的读速度比NAND稍快一些。
    2、NAND的写入速度比NOR快很多。
    3、NAND的4ms擦除速度远比NOR的5s快。
    4、大多数写入操作需要先进行擦除操作。
    5、NAND的擦除单元更小,相应的擦除电路更少。
    二、NAND flash和NOR flash的接口差别
    NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。
    NAND器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。8个引脚用来传送控制、地址和数据信息。NAND读和写操作采用512字节的块,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以取代硬盘或其他块设备。
    三、NAND flash和NOR flash的容量和成本
    NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。
    四、NAND flash和NOR flash的可靠性和耐用性
    采用flahs介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。
    五、NAND flash和NOR flash的寿命(耐用性)
    在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8倍,每个NAND存储器块在给定的时间内的删除次数要少一些。
    六、位交换
    所有flash器件都受位交换现象的困扰。在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特位会发生反转或被报告反转了。一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。如果只是报告有问题,多读几次就可能解决了。当然,如果这个位真的改变了,就必须采用错误探测/错误更正(EDC/ECC)算法。位反转的问题更多见于NAND闪存,NAND的供应商建议使用NAND闪存的时候,同时使用
    七、EDC/ECC算法
    这个问题对于用NAND存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统以确保可靠性。
    八、坏块处理
    NAND器件中的坏块是随机分布的。以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。
    NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。在已制成的器件中,如果通过可靠的方法不能进行这项处理,将导致高故障率。
    九、易于使用
    可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。
    由于需要I/O接口,NAND要复杂得多。各种NAND器件的存取方法因厂家而异。在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。
    十、软件支持
    当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。
    在NOR器件上运行代码不需要任何的软件支持,在NAND器件上进行同样操作时,通常需要驱动程序,也就是内存技术驱动程序(MTD),NAND和NOR器件在进行写入和擦除操作时都需要MTD。
    使用NOR器件时所需要的MTD要相对少一些,许多厂商都提供用于NOR器件的更高级软件,这其中包括M-System的TrueFFS驱动,该驱动被Wind River System、Microsoft、QNX Software System、Symbian和Intel等厂商所采用。
    驱动还用于对DiskOnChip产品进行仿真和NAND闪存的管理,包括纠错、坏块处理和损耗平衡。

  • 相关阅读:
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
    [原]Unity3D深入浅出
  • 原文地址:https://www.cnblogs.com/yygsj/p/4866094.html
Copyright © 2011-2022 走看看