zoukankan      html  css  js  c++  java
  • hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)

    Mirror and Light

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 650    Accepted Submission(s): 316


    Problem Description
    The light travels in a straight line and always goes in the minimal path between two points, are the basic laws of optics.

    Now, our problem is that, if a branch of light goes into a large and infinite mirror, of course,it will reflect, and leave away the mirror in another direction. Giving you the position of mirror and the two points the light goes in before and after the reflection, calculate the reflection point of the light on the mirror.
      
    You can assume the mirror is a straight line and the given two points can’t be on the different sizes of the mirror.
     
    Input
    The first line is the number of test case t(t<=100).
      
    The following every four lines are as follow:
      X1 Y1
      X2 Y2
      Xs Ys
      Xe Ye

      (X1,Y1),(X2,Y2) mean the different points on the mirror, and (Xs,Ys) means the point the light travel in before the reflection, and (Xe,Ye) is the point the light go after the reflection.

      The eight real number all are rounded to three digits after the decimal point, and the absolute values are no larger than 10000.0.
     
    Output
      Each lines have two real number, rounded to three digits after the decimal point, representing the position of the reflection point.
     
    Sample Input
    1 0.000 0.000 4.000 0.000 1.000 1.000 3.000 1.000
     
    Sample Output
    2.000 0.000
     
    Source
     
    Recommend
    gaojie   |   We have carefully selected several similar problems for you:  2855 2856 2854 2860 2861 

     
      计算几何:求点关于直线的对称点 + 两线段交点
      直接copy了别人的模板,写的有些混乱,见谅!有时间再研究。
      参考链接:
      代码:
     1 #include <iostream>
     2 #include <iomanip>
     3 #include <cmath>
     4 using namespace std;
     5 struct Point {double x,y;}; //
     6 struct Ldir{double dx,dy;}; //方向向量
     7 struct Lline{Point p; Ldir dir;}; //直线
     8 // 计算直线的一般式 Ax+By+C=0
     9 void format(Lline ln,double& A,double& B,double& C)
    10 {
    11     A=ln.dir.dy;
    12     B=-ln.dir.dx;
    13     C=ln.p.y*ln.dir.dx-ln.p.x*ln.dir.dy;
    14 }
    15 // 求点p1关于直线ln的对称点p2
    16 Point mirror(Point P,Lline ln)
    17 {
    18     Point Q;
    19     double A,B,C;
    20     format(ln,A,B,C);
    21     Q.x=((B*B-A*A)*P.x-2*A*B*P.y-2*A*C)/(A*A+B*B);
    22     Q.y=((A*A-B*B)*P.y-2*A*B*P.x-2*B*C)/(A*A+B*B);
    23     return Q;
    24 }
    25 //求线段交点 
    26 struct TLine
    27 {
    28     //直线标准式中的系数 
    29     double a, b, c;
    30 };
    31 TLine lineFromSegment(Point p1, Point p2) 
    32 { 
    33     TLine tmp; 
    34     tmp.a = p2.y - p1.y; 
    35     tmp.b = p1.x - p2.x; 
    36     tmp.c = p2.x * p1.y - p1.x * p2.y; 
    37     return tmp; 
    38 }
    39 /*求直线的交点,注意平形的情况无解,避免RE*/
    40 const double eps = 1e-6;    //注意一定要加,否则错误 
    41 Point LineInter(TLine l1, TLine l2)
    42 {
    43     //求两直线得交点坐标
    44     Point tmp; 
    45     double a1 = l1.a;
    46     double b1 = l1.b;
    47     double c1 = l1.c;
    48     double a2 = l2.a;
    49     double b2 = l2.b;
    50     double c2 = l2.c;
    51     //注意这里b1 = 0 
    52     if(fabs(b1) < eps){
    53         tmp.x = -c1 / a1; 
    54         tmp.y = (-c2 - a2 * tmp.x) / b2;
    55     }       
    56     else{
    57         tmp.x = (c1 * b2 - b1 * c2) / (b1 * a2 - b2 * a1);
    58         tmp.y = (-c1 - a1 * tmp.x) / b1;
    59     }
    60     return tmp;
    61 }
    62 int main()
    63 {
    64     int T;
    65     cin>>T;
    66     cout<<setiosflags(ios::fixed)<<setprecision(3);
    67     while(T--){
    68         Point p1,p2,ps,pe;
    69         Lline l;
    70         cin>>p1.x>>p1.y;
    71         cin>>p2.x>>p2.y;
    72         cin>>ps.x>>ps.y;
    73         cin>>pe.x>>pe.y;
    74         l.p = p1;
    75         l.dir.dx = p2.x - p1.x;
    76         l.dir.dy = p2.y - p1.y;
    77         Point duichen = mirror(ps,l);    //求对称点
    78         //cout<<duichen.x<<' '<<duichen.y<<endl;
    79         TLine l1,l2;
    80         l1 = lineFromSegment(p1,p2);
    81         l2 = lineFromSegment(duichen,pe);
    82         Point inter =  LineInter(l1,l2);    //求交点 
    83         cout<<inter.x<<' '<<inter.y<<endl;
    84     }
    85     return 0;
    86 }

    Freecode : www.cnblogs.com/yym2013

  • 相关阅读:
    jquery通过live绑定toggle事件
    svn is already locked解决方案
    不安全代码只会在使用 /unsafe 编译的情况下出现
    eclipse 新建 java 文件时自动生成注释
    浅谈权限设计
    ie6/IE8/IE9/谷歌以及火狐等浏览器下li 高度一致解决办法
    PHP+MSSQL TEXT字段被截断的解决方案
    利用CSS让dl dt dd呈现多行多列效果
    CSS实现图片水平垂直居中于DIV
    CSS 关于IE6 margin 为负数 负值的时候 正常显示的方法
  • 原文地址:https://www.cnblogs.com/yym2013/p/3543190.html
Copyright © 2011-2022 走看看