zoukankan      html  css  js  c++  java
  • Conjugate prior relationships

    Conjugate prior relationships

    The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.
    Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.

    These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.

    Click on a distribution to see its parameterization. Click on an arrow to see posterior parameters.

     

    Graph of conjugate prior relationships

     

    See this page for more diagrams on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian statistical consulting.

    Parameterizations

    Let C(nk) denote the binomial coefficient(nk).

    The geometric distribution has only one parameter, p, and has PMF f(x) = p (1-p)x.

    The binomial distribution with parameters n and p has PMF f(x) = C(nxpx(1-p)n-x.

    The negative binomial distribution with parameters r and p has PMF f(x) = C(r + x – 1, x)pr(1-p)x.

    The Bernoulli distribution has probability of success p.

    The beta distribution has PDF f(p) = Γ(α + β) pα-1(1-p)β-1 / (Γ(α) Γ(β)).

    The exponential distribution parameterized in terms of the rate λ has PDF f(x) = λ exp(-λ x).

    The gamma distribution parameterized in terms of the rate has PDF f(x) = βα xα-1exp(-β x) / Γ(α).

    The Poisson distribution has one parameter λ and PMF f(x) = exp(-λ) λxx!.

    The normal distribution parameterized in terms of precision τ (τ = 1/σ2)
    has PDF f(x) = (τ/2π)1/2 exp( -τ(x – μ)2/2 ).

    The lognormal distribution parameterized in terms of precision τ has PDF f(x) = (τ/2π)1/2exp( -τ(log(x) – μ)2/2 ) / x.

    Posterior parameters

    For each sampling distribution, assume we have data x1x2, …, xn.

    If the sampling distribution for x is binomial(mp) with m known, and the prior distribution is beta(α, β), the posterior distribution for p is beta(α + Σxi, β + mn – Σxi). The Bernoulli is the special case of the binomial with m = 1.

    If the sampling distribution for x is negative binomial(r, p) with r known, and the prior distribution is beta(α, β), the posterior distribution for p is beta(α + nr, β + Σxi). Thegeometric is the special case of the negative binomial with r = 1.

    If the sampling distribution for x is gamma(α, β) with α known, and the prior distribution on β is gamma(α0, β0), the posterior distribution for β is gamma0 + n, β0 + Σxi). Theexponential is a special case of the gamma with α = 1.

    If the sampling distribution for x is Poisson(λ), and the prior distribution on λ is gamma0, β0), the posterior on λ is gamma0 + Σxi, β0 + n).

    If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal0, τ0), the posterior distribution on μ is normal((μ0 τ0 + τ Σxi)/(τ0 + nτ), τ0 + nτ).

    If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α + n/2, (n-1)S2) where S2 is the sample variance.

    If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal0, τ0), the posterior distribution on μ is normal((μ0 τ0 + τ Πxi)/(τ0 + nτ), τ0 +nτ).

    If the sampling distribution for x is lognormal(μ, τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α + n/2, (n-1)S2) where S2 is the sample variance.

    References

    A compendium of conjugate priors by Daniel Fink.

    See also Wikipedia’s article on conjugate priors.


  • 相关阅读:
    【算法】百度百科经典算法链接集
    【剑指offer】38.字符串的排列
    Spring整合RabbitMQ
    JVM对象的内存分配,内存布局和访问定位
    记一次需求的表结构设计变更
    sql server中的系统数据库
    HttpWebRequest / HttpWebResponse 远程获取文件信息
    XML的操作
    对于XML无法传输转义字符的问题
    还原数备份文件 SQL语句
  • 原文地址:https://www.cnblogs.com/yymn/p/4454448.html
Copyright © 2011-2022 走看看