zoukankan      html  css  js  c++  java
  • L1、L2范式及稀疏性约束

    L1、L2范式及稀疏性约束  

    假设需要求解的目标函数为:

                        E(x) = f(x) + r(x)

        其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型进行限制,根据模型参数的概率分布不同,r(x)一般有:L1范式约束(模型服从高斯分布),L2范式约束(模型服从拉普拉斯分布);其它的约束一般为两者组合形式。

        L1范式约束一般为:

            

        L2范式约束一般为:

                

         L1范式可以产生比较稀疏的解,具备一定的特征选择的能力,在对高维特征空间进行求解的时候比较有用;L2范式主要是为了防止过拟合。

    稀疏性约束

        在文章Non-negative Matrix Factorization With Sparseness Constraints中,将L1范式和L2范式组合起来形成新的约束条件,用稀疏度来表示L1范式和L2范式之间的关系(转发时注:下面公式,根号内应该是求平方和):

                        

        当向量x中只有一个非零的值时,稀疏度为1,当所有元素非零且相等的时候稀疏度为0。n表示向量x的维度。不同稀疏度的向量表示如下:

                       

  • 相关阅读:
    堆排序(改进的简单选择排序)
    希尔排序(改进的直接插入排序)
    直接插入排序
    简单选择排序
    冒泡排序&排序算法简介
    处理器的体系结构
    虚拟存储器
    Python函数
    在主项目中添加子项目
    聚合分组查询
  • 原文地址:https://www.cnblogs.com/yymn/p/4622340.html
Copyright © 2011-2022 走看看