zoukankan      html  css  js  c++  java
  • SPOJ

    Balanced Numbers

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4




    题意:奇数个数为偶数,偶数个数为奇数。

    用三进制来表示0-9的状态,0为没有,1为奇数个,2为偶数个。
    3^10约为60000。
    注意判断前导零。


    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    ll a[20],p[12],st[60000][12];
    ll dp[20][60000];
    
    ll dfs(int pos,int sta,bool lead,bool limit){
        
        if(pos==-1){
            for(int i=1;i<=9;i+=2){
                if(st[sta][i]==1) return 0;
            }
            for(int i=0;i<=9;i+=2){
                if(st[sta][i]==2) return 0;
            }
            return 1;
        }
        if(!lead&&!limit&&dp[pos][sta]>-1) return dp[pos][sta];
        int up=limit?a[pos]:9;
        ll cnt=0;
        for(int i=0;i<=up;i++){
            if(i==0&&lead){
                cnt+=dfs(pos-1,sta,lead&&i==0,limit&&i==a[pos]);
            }
            else if(st[sta][i]==2){
                cnt+=dfs(pos-1,sta-p[i],lead&&i==0,limit&&i==a[pos]);
            }
            else{
                cnt+=dfs(pos-1,sta+p[i],lead&&i==0,limit&&i==a[pos]);
            }
        }
        if(!lead&&!limit) dp[pos][sta]=cnt;
        return cnt;
    }
    ll solve(ll x){
        int pos=0;
        while(x){
            a[pos++]=x%10;
            x/=10;
        }
        return dfs(pos-1,0,true,true);
    }
    int main()
    {
        int t;
        ll l,r;
        scanf("%d",&t);
        memset(dp,-1,sizeof(dp));
        p[0]=1;
        for(int i=1;i<=10;i++){
            p[i]=p[i-1]*3;
        }
        for(int i=1;i<p[10];i++){
            int ii=i,c=-1;
            while(ii){
                c++;
                st[i][c]=ii%3;
                ii/=3;
            }
        }
        while(t--){
            scanf("%lld%lld",&l,&r);
            printf("%lld
    ",(solve(r)-solve(l-1)));
        }
        return 0;
    }
  • 相关阅读:
    PythonStudy——epoll 模块实现异步IO模型
    MySQLStudy——Mac下MySQL 允许用户远程访问数据库
    MySQLStudy——MySQL 基础语句
    MySQLStudy——MySQL 概念
    MySQLStudy——Mac下MySQL 常用命令 启动 关闭 重启服务 查看版本
    PythonStudy——IO模型
    PythonStudy——非阻塞IO模型
    PythonStudy——多路复用IO select实现
    restfull api
    斜体菜单
  • 原文地址:https://www.cnblogs.com/yzm10/p/10328624.html
Copyright © 2011-2022 走看看