zoukankan      html  css  js  c++  java
  • SPOJ

    Balanced Numbers

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4




    题意:奇数个数为偶数,偶数个数为奇数。

    用三进制来表示0-9的状态,0为没有,1为奇数个,2为偶数个。
    3^10约为60000。
    注意判断前导零。


    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    ll a[20],p[12],st[60000][12];
    ll dp[20][60000];
    
    ll dfs(int pos,int sta,bool lead,bool limit){
        
        if(pos==-1){
            for(int i=1;i<=9;i+=2){
                if(st[sta][i]==1) return 0;
            }
            for(int i=0;i<=9;i+=2){
                if(st[sta][i]==2) return 0;
            }
            return 1;
        }
        if(!lead&&!limit&&dp[pos][sta]>-1) return dp[pos][sta];
        int up=limit?a[pos]:9;
        ll cnt=0;
        for(int i=0;i<=up;i++){
            if(i==0&&lead){
                cnt+=dfs(pos-1,sta,lead&&i==0,limit&&i==a[pos]);
            }
            else if(st[sta][i]==2){
                cnt+=dfs(pos-1,sta-p[i],lead&&i==0,limit&&i==a[pos]);
            }
            else{
                cnt+=dfs(pos-1,sta+p[i],lead&&i==0,limit&&i==a[pos]);
            }
        }
        if(!lead&&!limit) dp[pos][sta]=cnt;
        return cnt;
    }
    ll solve(ll x){
        int pos=0;
        while(x){
            a[pos++]=x%10;
            x/=10;
        }
        return dfs(pos-1,0,true,true);
    }
    int main()
    {
        int t;
        ll l,r;
        scanf("%d",&t);
        memset(dp,-1,sizeof(dp));
        p[0]=1;
        for(int i=1;i<=10;i++){
            p[i]=p[i-1]*3;
        }
        for(int i=1;i<p[10];i++){
            int ii=i,c=-1;
            while(ii){
                c++;
                st[i][c]=ii%3;
                ii/=3;
            }
        }
        while(t--){
            scanf("%lld%lld",&l,&r);
            printf("%lld
    ",(solve(r)-solve(l-1)));
        }
        return 0;
    }
  • 相关阅读:
    获取有关控件的坐标
    Android PopupWindow的使用和分析
    Android RecyclerView 使用完全解析 体验艺术般的控件
    TextView中显示价格并且中间直接有一个横线
    Android Studio
    移动开发】Android中三种超实用的滑屏方式汇总(ViewPager、ViewFlipper、ViewFlow)
    Android中visibility属性VISIBLE、INVISIBLE、GONE的区别
    理解Java的IO流 2015年8月6日 21:30:38
    算法导论学习随笔——第七章 快速排序
    oj 1031 random permutation
  • 原文地址:https://www.cnblogs.com/yzm10/p/10328624.html
Copyright © 2011-2022 走看看