算法训练 2的次幂表示
问题描述
任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
正整数(1<=n<=20000)
输出格式
符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
提示
用递归实现会比较简单,可以一边递归一边输出
因为递归结果是从左往右有序的,所以可以对数字和括号分别处理。并且每部分的第一项没有+号。
另外Integer.toBinaryString(x);可实现十进制与二进制的转换。
import java.util.Scanner; class Main { static Scanner sc = new Scanner(System.in); static int f; static void dg(int x) { if(x==0) { System.out.print(0); return; } if(x==2) { System.out.print(2); return; } String s = Integer.toBinaryString(x); //java提供的进制转换 int len=s.length(); f=0; for(int i=0;i<len;i++) { if(s.charAt(i)=='1') { if(f==1) System.out.print("+"); f=1; if(len-1-i==1) System.out.print("2"); else { System.out.print("2("); dg(len-1-i); System.out.print(")"); } } } } public static void main(String args[]){ int n = sc.nextInt(); dg(n); System.out.println(); } }