zoukankan      html  css  js  c++  java
  • HDU

    Palindrome Function

    As we all know,a palindrome number is the number which reads the same backward as forward,such as 666 or 747.Some numbers are not the palindrome numbers in decimal form,but in other base,they may become the palindrome number.Like 288,it’s not a palindrome number under 10-base.But if we convert it to 17-base number,it’s GG,which becomes a palindrome number.So we define an interesting function f(n,k) as follow: 
    f(n,k)=k if n is a palindrome number under k-base. 
    Otherwise f(n,k)=1. 
    Now given you 4 integers L,R,l,r,you need to caluclate the mathematics expression Ri=Lrj=lf(i,j)∑i=LR∑j=lrf(i,j) . 
    When representing the k-base(k>10) number,we need to use A to represent 10,B to represent 11,C to repesent 12 and so on.The biggest number is Z(35),so we only discuss about the situation at most 36-base number.

    InputThe first line consists of an integer T,which denotes the number of test cases. 
    In the following T lines,each line consists of 4 integers L,R,l,r. 
    (1T105,1LR109,2lr361≤T≤105,1≤L≤R≤109,2≤l≤r≤36)OutputFor each test case, output the answer in the form of “Case #i: ans” in a seperate line.Sample Input

    3
    1 1 2 36
    1 982180 10 10
    496690841 524639270 5 20

    Sample Output

    Case #1: 665
    Case #2: 1000000
    Case #3: 447525746



    [l,r]在[kl,kr]进制下回文串个数。



    #include<bits/stdc++.h>
    #define MAX 100
    using namespace std;
    typedef long long ll;
    
    int a[MAX];
    int b[MAX];
    ll dp[MAX][MAX][2][40];
    
    ll dfs(int pos,int pre,bool hw,bool limit,int k){
        int i;
        if(pos<0){
            if(hw) return k;
            return 1;
        }
        if(!limit&&dp[pos][pre][hw][k]>-1) return dp[pos][pre][hw][k];
        int up=limit?a[pos]:k-1;
        ll cnt=0;
        for(i=0;i<=up;i++){
            b[pos]=i;
            if(pos==pre&&i==0){
                cnt+=dfs(pos-1,pre-1,hw,limit&&i==a[pos],k);
            }
            else if(hw&&pos<=pre/2){
                cnt+=dfs(pos-1,pre,hw&&b[pre-pos]==i,limit&&i==a[pos],k);
            }
            else{
                cnt+=dfs(pos-1,pre,hw,limit&&i==a[pos],k);
            }
        }
        if(!limit) dp[pos][pre][hw][k]=cnt;
        return cnt;
    }
    ll solve(ll x,int k){
        int pos=0;
        while(x){
            a[pos++]=x%k;
            x/=k;
        }
        return dfs(pos-1,pos-1,true,true,k);
    }
    int main()
    {
        int tt=0,t,i;
        ll l,r,kl,kr;
        scanf("%d",&t);
        memset(dp,-1,sizeof(dp));
        while(t--){
            scanf("%lld%lld%lld%lld",&l,&r,&kl,&kr);
            ll ans=0;
            for(i=kl;i<=kr;i++){
                ans+=solve(r,i)-solve(l-1,i);
            }
            printf("Case #%d: %lld
    ",++tt,ans);
        }
        return 0;
    }
  • 相关阅读:
    OLEDB 枚举数据源
    OLEDB 调用存储过程
    OLEDB 参数化查询
    多结果集IMultipleResult接口
    使用pyh生成HTML文档
    数据更新接口与延迟更新
    SQL语句执行与结果集的获取
    事务对象和命令对象
    DNS练习之反向解析
    DNS练习之正向解析
  • 原文地址:https://www.cnblogs.com/yzm10/p/9531094.html
Copyright © 2011-2022 走看看