zoukankan      html  css  js  c++  java
  • HDU

    Best Solver

    The so-called best problem solver can easily solve this problem, with his/her childhood sweetheart. 

    It is known that y=(5+26–√)1+2xy=(5+26)1+2x. 
    For a given integer x (0x<232)x (0≤x<232) and a given prime number M (M46337)M (M≤46337), print [y]%M[y]%M. ([y][y] means the integer part of yy) 

    InputAn integer T (1<T1000)T (1<T≤1000), indicating there are TT test cases. 
    Following are TT lines, each containing two integers xx and MM, as introduced above.
    OutputThe output contains exactly TT lines. 
    Each line contains an integer representing [y]%M[y]%M.
    Sample Input

    7
    0 46337
    1 46337
    3 46337
    1 46337
    21 46337
    321 46337
    4321 46337

    Sample Output

    Case #1: 97
    Case #2: 969
    Case #3: 16537
    Case #4: 969
    Case #5: 40453
    Case #6: 10211
    Case #7: 17947



    循环节题目常见的有两种情况:
    1.MOD-1
    2.MOD^2-1
    通过推导或暴力可求出。

    本题循环节MOD^2-1。


    #include<bits/stdc++.h>
    #define MAX 3
    using namespace std;
    typedef long long ll;
    
    ll n,MOD;
    struct mat{
        ll a[MAX][MAX];
    };
    
    mat operator *(mat x,mat y)
    {
        mat ans;
        memset(ans.a,0,sizeof(ans.a));
        for(int i=1;i<=2;i++){
            for(int j=1;j<=2;j++){
                for(int k=1;k<=2;k++){
                    ans.a[i][j]+=(x.a[i][k]*y.a[k][j]+MOD)%MOD;
                    ans.a[i][j]%=MOD;
                }
            }
        }
        return ans;
    }
    mat qMod(mat a,ll n)
    {
        mat t;
        t.a[1][1]=10;t.a[1][2]=-1;
        t.a[2][1]=1;t.a[2][2]=0;
        while(n){
            if(n&1) a=t*a;
            n>>=1;
            t=t*t;
        }
        return a;
    }
    ll qsortMod(ll a,ll b)
    {
        ll ans=1;
        a%=((MOD+1)*(MOD-1));
        while(b){
            if(b&1) ans=ans*a%((MOD+1)*(MOD-1));
            b>>=1;
            a=a*a%((MOD+1)*(MOD-1));
        }
        return ans;
    }
    int main()
    {
        int tt=0,t,i;
        scanf("%d",&t);
        while(t--){
            scanf("%I64d%I64d",&n,&MOD);
            mat a;
            a.a[1][1]=10;a.a[1][2]=0;
            a.a[2][1]=2;a.a[2][2]=0;
            a=qMod(a,qsortMod(2,n));
            printf("Case #%d: %I64d
    ",++tt,(a.a[1][1]-1+MOD)%MOD);
            
        }
        return 0;
    }
  • 相关阅读:
    浏览器HTTP缓存原理分析
    基本概念复习
    什么是IOC为什么要使用IOC
    AutoFac记录
    NHibernate之旅(21):探索对象状态
    如何获取类或属性的自定义特性(Attribute)
    a different object with the same identifier value was already associated with the session
    6 CLR实例构造器
    6 CLR静态构造器
    CLR via C# 提纲
  • 原文地址:https://www.cnblogs.com/yzm10/p/9566725.html
Copyright © 2011-2022 走看看