题目
There are 2N balls, N white and N black, arranged in a row. The integers from 1 through N are written on the white balls, one on each ball, and they are also written on the black balls, one on each ball. The integer written on the i-th ball from the left (1 ≤ i ≤ 2N) is ai, and the color of this ball is represented by a letter ci. ci = W
represents the ball is white; ci = B
represents the ball is black.
Takahashi the human wants to achieve the following objective:
- For every pair of integers (i,j) such that 1 ≤ i < j ≤ N, the white ball with i written on it is to the left of the white ball with j written on it.
- For every pair of integers (i,j) such that 1 ≤ i < j ≤ N, the black ball with i written on it is to the left of the black ball with j written on it.
In order to achieve this, he can perform the following operation:
- Swap two adjacent balls.
Find the minimum number of operations required to achieve the objective.
Constraints
- 1 ≤ N ≤ 2000
- 1 ≤ ai ≤ N
- ci =
W
or ci =B
. - If i ≠ j, (ai,ci) ≠ (aj,cj)
Input
Input is given from Standard Input in the following format:
N
c1 a1
c2 a2
:
c2N a2N
Output
Print the minimum number of operations required to achieve the objective.
题目大意
给出一个黑棋N个白棋N个的排列,每一种颜色的球分别标上1 - N,每次可以交换相邻两个球,求白棋相对顺序正确并且黑棋相对顺序正确,所需要最少的步数
分析
设dpij为排好白球前i个和黑球前j个所需最小步数,用a和b数组分别记录黑白球的每一数值所在位置,用c1和c2分别记录将黑白球某一数值x移到此颜色的x-1数值之后所需步数(这里的步数既有同色数目又有异色数目)。所以我们不难想出dpij由dpi-1j和dpij-1转移而来,因此得到方程式dp[i][j]=min(dp[i-1][j]+c1[i][j],dp[i][j-1]+c2[i][j])。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int dp[2100][2100],a[2100],b[2100],c1[2100][2100],c2[2100][2100];
int main(){
int n,m,i,j,k,x;
char ch;
cin>>n;
for(i=1;i<=2*n;i++){
cin>>ch>>x;
if(ch=='B'){
a[x]=i;
}else {
b[x]=i;
}
}
for(i=1;i<=n;i++){
for(j=1;j<i;j++)
if(a[i]<a[j])c1[i][0]++;
for(j=1;j<=n;j++){
c1[i][j]=c1[i][j-1];
if(b[j]>a[i])c1[i][j]++;
}
}
//c用于记录要向后走几步
for(i=1;i<=n;i++){
for(j=1;j<i;j++)
if(b[i]<b[j])c2[0][i]++;
for(j=1;j<=n;j++){
c2[j][i]=c2[j-1][i];
if(a[j]>b[i])c2[j][i]++;
}
}
int wh1=0,wh2=0;
for(i=1;i<=n;i++){
wh1+=c1[i][0];
wh2+=c2[0][i];
dp[i][0]=wh1;
dp[0][i]=wh2;
}
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
dp[i][j]=min(dp[i-1][j]+c1[i][j],dp[i][j-1]+c2[i][j]);
cout<<dp[n][n]<<endl;
return 0;
}