zoukankan      html  css  js  c++  java
  • Round #431 (Div.2)

    A. Odds and Ends
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?

    Given an integer sequence a1, a2, ..., an of length n. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.

    A subsegment is a contiguous slice of the whole sequence. For example, {3, 4, 5} and {1} are subsegments of sequence {1, 2, 3, 4, 5, 6}, while {1, 2, 4} and {7} are not.

     
    Input

    The first line of input contains a non-negative integer n (1 ≤ n ≤ 100) — the length of the sequence.

    The second line contains n space-separated non-negative integers a1, a2, ..., an (0 ≤ ai ≤ 100) — the elements of the sequence.

     
    Output

    Output "Yes" if it's possible to fulfill the requirements, and "No" otherwise.

    You can output each letter in any case (upper or lower).

     
    Examples
    Input
    3
    1 3 5
     
    Output
    Yes
     
    Input
    5
    1 0 1 5 1
     
    Output
    Yes
     
    Input
    3
    4 3 1
     
    Output
    No
     
    Input
    4
    3 9 9 3
     
    Output
    No
     
    Note

    In the first example, divide the sequence into 1 subsegment: {1, 3, 5} and the requirements will be met.

    In the second example, divide the sequence into 3 subsegments: {1, 0, 1}, {5}, {1}.

    In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.

    In the fourth example, the sequence can be divided into 2 subsegments: {3, 9, 9}, {3}, but this is not a valid solution because 2 is an even number.

    题意:奇数长度,奇数开头,奇数结尾

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 int n,a[105];
     4 
     5 int  main(){
     6     scanf("%d",&n); 
     7     for(int i=1;i<=n;i++)    
     8         scanf("%d",&a[i]);
     9     if((n&1)&&(a[n]&1)&&(a[1]&1)) puts("Yes");
    10         else puts("No");
    11       
    12 
    13 }
  • 相关阅读:
    C# WPF定时器
    C#处理JSON数据
    SQL-乐观锁,悲观锁之于并发
    C# 集合-并发处理-锁OR线程
    C# 生成二维码,彩色二维码,带有Logo的二维码及普通条形码
    C# (事件触发)回调函数,完美处理各类疑难杂症!
    C# Lambda表达式
    C# 匿名方法
    浅谈C# 匿名变量
    鸡兔同笼
  • 原文地址:https://www.cnblogs.com/z-712/p/7470422.html
Copyright © 2011-2022 走看看