zoukankan      html  css  js  c++  java
  • Bert issue: cannot import name 'modeling' from 'bert'

    测试Bert代码复现
    from bert import modeling
    No module named 'bert_serving' 解决方法
    pip install bert-serving-server --user
    pip install bert-serving-client --user
    问题依旧
    pip install bert
    ImportError: cannot import name 'modeling' from 'bert' (C:ProgramDataAnaconda3libsite-packagesert\__init__.py)

    PyTorch版本的谷歌AI BERT模型,带有加载谷歌预训练模型的脚本
    https://www.ctolib.com/huggingface-pytorch-pretrained-BERT.html


    pip install bert-tensorflow
    出现新的问题
    ---------------------------------------------------------------------------
    AttributeError Traceback (most recent call last)
    <ipython-input-11-0ee46f3b6da2> in <module>
    6
    7 # 这里是下载下来的bert配置文件
    ----> 8 bert_config = modeling.BertConfig.from_json_file("chinese_L-12_H-768_A-12/bert_config.json")
    9 # 创建bert的输入
    10 input_ids=tf.placeholder (shape=[64,128],dtype=tf.int32,name="input_ids")

    C:ProgramDataAnaconda3libsite-packagesertmodeling.py in from_json_file(cls, json_file)
    91 def from_json_file(cls, json_file):
    92 """Constructs a `BertConfig` from a json file of parameters."""
    ---> 93 with tf.gfile.GFile(json_file, "r") as reader:
    94 text = reader.read()
    95 return cls.from_dict(json.loads(text))

    AttributeError: module 'tensorflow' has no attribute 'gfile'

    解决方法:

    将tf.gfile 换成tf.io.gfile.

    继续找方法

    降低tensorflow的版本,将tensorflow2.X的降低为tensorflow1.X

    #卸载tensorflow

    pip uninstall tensorflow
    conda uninstall tensorflow #这一步非常漫长,大概持续了3个小时

    #安装制定版本的tensorflow
    pip install tensorflow==1.8.0


    2020.5.31
    CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://mirrors.tuna.tsinghu
    a.edu.cn/anaconda/pkgs/main/win-64/qt-5.9.7-vc14h73c81de_0.conda>
    Elapsed: -

    An HTTP error occurred when trying to retrieve this URL.
    HTTP errors are often intermittent, and a simple retry will get you on your way.


    (base) C:UsersAdministrator>


    conda uninstall tensorflow
    #第二天重新尝试,失败告终
    干脆跳过这一步算了。

    pip install tensorflow==1.8.0
    (base) C:UsersAdministrator>pip install tensorflow==1.8.0
    Looking in indexes: http://mirrors.aliyun.com/pypi/simple/
    ERROR: Could not find a version that satisfies the requirement tensorflow==1.8.0
    (from versions: 1.13.0rc1, 1.13.0rc2, 1.13.1, 1.13.2, 1.14.0rc0, 1.14.0rc1, 1.1
    4.0, 1.15.0rc0, 1.15.0rc1, 1.15.0rc2, 1.15.0rc3, 1.15.0, 1.15.2, 1.15.3, 2.0.0a0
    , 2.0.0b0, 2.0.0b1, 2.0.0rc0, 2.0.0rc1, 2.0.0rc2, 2.0.0, 2.0.1, 2.0.2, 2.1.0rc0,
    2.1.0rc1, 2.1.0rc2, 2.1.0, 2.1.1, 2.2.0rc0, 2.2.0rc1, 2.2.0rc2, 2.2.0rc3, 2.2.0
    rc4, 2.2.0)
    ERROR: No matching distribution found for tensorflow==1.8.0
    WARNING: You are using pip version 20.1; however, version 20.1.1 is available.
    You should consider upgrading via the 'c:programdataanaconda3python.exe -m pi
    p install --upgrade pip' command.

    pip install tensorflow==1.15.0

    大功告成。

    附: 部分代码

    import tensorflow as tf
    #import bert
    from bert import modeling
    import os
    
    # 这里是下载下来的bert配置文件
    bert_config = modeling.BertConfig.from_json_file("chinese_L-12_H-768_A-12/bert_config.json")
    #  创建bert的输入
    input_ids=tf.placeholder (shape=[64,128],dtype=tf.int32,name="input_ids")
    input_mask=tf.placeholder (shape=[64,128],dtype=tf.int32,name="input_mask")
    segment_ids=tf.placeholder (shape=[64,128],dtype=tf.int32,name="segment_ids")
    
    # 创建bert模型
    model = modeling.BertModel(
        config=bert_config,
        is_training=True,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=False # 这里如果使用TPU 设置为True,速度会快些。使用CPU 或GPU 设置为False ,速度会快些。
    )
    

      

    #bert模型参数初始化的地方
    init_checkpoint = "chinese_L-12_H-768_A-12/bert_model.ckpt"
    use_tpu = False
    # 获取模型中所有的训练参数。
    tvars = tf.trainable_variables()
    # 加载BERT模型
    
    (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
                                                                                           init_checkpoint)
    
    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
    
    tf.logging.info("**** Trainable Variables ****")
    # 打印加载模型的参数
    for var in tvars:
        init_string = ""
        if var.name in initialized_variable_names:
            init_string = ", *INIT_FROM_CKPT*"
        tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                        init_string)
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
    

      

  • 相关阅读:
    上班不再能上msn了
    小龟不用冬眠了
    Sonne学摄影(3)上海汽车展汽车
    新年提醒银行卡的用户注意了
    转贴:49届世乒赛海外名将介绍究竟谁会对中国队构成威胁??
    用两个词形容现在的生活:忙碌,充实
    终于加入胖友一族
    上海人
    相互残杀
    王励勤,好样的!看49届世乒赛男单决赛
  • 原文地址:https://www.cnblogs.com/z-cm/p/13021569.html
Copyright © 2011-2022 走看看