zoukankan      html  css  js  c++  java
  • PTA A1015

    A1015 Reversible Primes (20 分)

    题目内容

    A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
    Now given any two positive integers N (<10
    ​5
    ​​) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.

    Input Specification:

    The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.

    Output Specification:

    For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.

    Sample Input:

    73 10
    23 2
    23 10
    -2

    Sample Output:

    Yes
    Yes
    No

    单词

    reversible

    英 /rɪ'vɜːsɪb(ə)l/ 美 /rɪ'vɝsəbl/
    n. 双面布料
    adj. 可逆的;可撤消的;可反转的

    Prime

    n. (美、法)普赖姆(人名)
    adj. (prime) 主要的,首要的;最好的;典型的;最适宜的;素数的
    n. (prime) 盛年,鼎盛时期
    v. (prime) 使准备好

    题目分析

    弄清楚题目意思(这是我目前最大的困难之一,英文真的很难搞啊),这道题目还是很简单的,一是如何判断一个数是不是质数,而是如何计算出根据机制翻转后的数,由于之前做过一道和进制有关的题,所以做起来感觉没什么困难,对了,1不是质数,>_<。

    具体代码

    #include<stdio.h>
    #include<stdlib.h>
    
    int is_prime(int n)
    {
        if(n==1)
        return 0;
    	for (int i = 2; i < n; i++)
    	{
    		if (n%i == 0)
    			return 0;
    	}
    	return 1;
    }
    
    int main(void)
    {
    	while (1)
    	{
    		int n, radix, rn = 0;
    		scanf("%d", &n);
    		if (n < 0)break;
    		else
    		{
    			scanf("%d", &radix);
    			if (is_prime(n))
    			{
    				while (n != 0)
    				{
    					int m = n % radix;
    					rn = rn * radix + m;
    					n /= radix;
    				}
    				if (is_prime(rn))
    				{
    					printf("Yes
    ");
    				}
    				else
    					printf("No
    ");
    			}
    			else printf("No
    ");
    		}
    	}
    	system("pause");
    }
    
  • 相关阅读:
    算法之递归
    初读 c# IL中间语言
    sql语句转为Model
    WPF-悬浮窗(类似于360)
    call,apply
    作用域题目
    css BFC
    数组扁平化 flatten
    常见的异步题
    setTimeout、Promise、Async/Await 的区别
  • 原文地址:https://www.cnblogs.com/z-y-k/p/11565662.html
Copyright © 2011-2022 走看看