zoukankan      html  css  js  c++  java
  • NYOJ 石子合并(一) 区间dp入门级别

    描述    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。

     
    输入
    有多组测试数据,输入到文件结束。
    每组测试数据第一行有一个整数n,表示有n堆石子。
    接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
    输出
    输出总代价的最小值,占单独的一行
    样例输入
    3
    1 2 3
    7
    13 7 8 16 21 4 18
    样例输出
    9
    239

    区间dp模板题吧,属于区间dp求解区间内最优解的问题
    思想就是区间分割,由小区间不断合并成最优的大区间
    这里要主要的是dp的定义咯 我们定义dp[i][j] 表示i~j这些石子合并需要花费的代价
    那么对于任何dp[i][j] 我们可以把它看做两个子区间的合并 比如dp[i][k-1] and dp[k][j] 这两个区间代价之和还要加上这次合并需要的额外开销就是
    一次对dp[i][j]的分解尝试所得的值 然后枚举子区间(就是枚举中间值)就可以了———— 这个地方直接看代码比较好理解
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    using namespace std;
    const int inf=10000009;
    int main()
    {
        int n;
        while(cin>>n)
        {
            int a[201],sum[200];
            int dp[201][201];
            memset(dp,0,sizeof(dp));
            memset(sum,0,sizeof(sum));
            for(int i=1;i<=n;i++)
            {
                cin>>a[i];
                sum[i]=sum[i-1]+a[i];
            }
    /*
    为了合并出我们需要的大区间 任何长度的子区间我们都是需要的 所以我们先枚举区间的长度 然后在枚举区间的起点 之后状态转移(枚举中间值)
    */
    for(int l=2;l<=n;l++)//枚举长度 { for(int i=1;i+l-1<=n;i++) { int j=i+l-1; dp[i][j]=inf; for(int k=i+1;k<=j;k++)// 中间值的枚举 { dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k][j]+sum[j]-sum[i-1]); } } } cout<<dp[1][n]<<endl; } return 0; }


  • 相关阅读:
    JavaEE--JNDI(下,实现)
    JavaEE--JNDI(上,简介)
    JavaSE--java是值传递还是引用传递
    Mysql--主库不停机搭建备库
    MySQL--从库启动复制报错1236
    JVM·垃圾收集器与内存分配策略之垃圾收集器!
    mysql·事务挂起
    hash·余数hash和一致性hash
    关于正则效率问题(正则导致程序卡死)
    JVM·参数配置
  • 原文地址:https://www.cnblogs.com/z1141000271/p/6759284.html
Copyright © 2011-2022 走看看