源文件内容如下(包含 id,name,age),将数据复制保存到 ubuntu 系统/usr/local/spark 下, 命名为 employee.txt,实现从 RDD 转换得到 DataFrame,并按 id:1,name:Ella,age:36 的格式 打印出 DataFrame 的所有数据。请写出程序代码。(任选一种方法即可)
1,Ella,36 2,Bob,29 3,Jack,29
代码如下:
import org.apache.spark.sql.types._ import org.apache.spark.sql.Encoder import org.apache.spark.sql.Row import org.apache.spark.sql.SparkSession object RDDtoDF { def main(args: Array[String]) { val spark = SparkSession.builder().appName("RddToDFrame").master("local").getOrCreate() import spark.implicits._ val employeeRDD =spark.sparkContext.textFile("file:///usr/local/spark/employee.txt") val schemaString = "id name age" val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, nullable = true)) val schema = StructType(fields) val rowRDD = employeeRDD.map(_.split(",")).map(attributes => Row(attributes(0).trim, attributes(1), attributes(2).trim)) val employeeDF = spark.createDataFrame(rowRDD, schema) employeeDF.createOrReplaceTempView("employee") val results = spark.sql("SELECT id,name,age FROM employee") results.map(t => "id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show() } }
运行截图: