淘宝网拥有国内最具商业价值的海量数据,而帮助消费者进行理性的购物决策,是淘宝数据平台与产品部的使命。为此,我们进行了一系列数据产品的研发,比如为大家所熟知的量子统计、数据魔方和淘宝指数等。本文将以数据魔方为例,向大家介绍淘宝在海量数据产品技术架构方面的探索。
按照数据的流向来划分,我们把淘宝数据产品的技术架构分为五层,分别是数据源、计算层、存储层、查询层和产品层。位于架构顶端的是我们的数据来源层,这里有淘宝主站的用户、店铺、商品和交易等数据库,还有用户的浏览、搜索等行为日志等。这一系列的数据是数据产品最原始的生命力所在。
接下来将重点从四个方面阐述数据魔方设计上的特点
关系型数据库(RDBMS)自20世纪70年代提出以来,在工业生产中得到了广泛的使用。经过三十多年的长足发展,诞生了一批优秀的数据库软件,例如Oracle、MySQL、DB2、Sybase和SQL Server等。
尽管相对于非关系型数据库而言,关系型数据库在分区容忍性(Tolerance to Network Partitions)方面存在劣势,但由于它强大的语义表达能力以及数据之间的关系表达能力,在数据产品中仍然占据着不可替代的作用。
淘宝数据产品选择MySQL的MyISAM引擎作为底层的数据存储引擎。在此基础上,为了应对海量数据,我们设计了分布式MySQL集群的查询代理层——MyFOX,使得分区对前端应用透明。
在MyFOX出现之后,一切都看起来那么完美,开发人员甚至不会意识到MyFOX的存在,一条不用任何特殊修饰的SQL语句就可以满足需求。这个状态持续了很长一段时间,直到有一天,我们碰到了传统的关系型数据库无法解决的问题——全属性选择器
MyFOX和Prom为数据产品的不同需求提供了数据存储和底层查询的解决方案,但随之而来的问题是,各种异构的存储模块给前端产品的使用带来了很大的挑战。并且,前端产品的一个请求所需要的数据往往不可能只从一个模块获取
除了起到隔离前后端以及异构“表”之间的数据整合的作用之外,glider的另外一个不容忽视的作用便是缓存管理。上文提到过,在特定的时间段内,我们认为数据产品中的数据是只读的,这是利用缓存来提高性能的理论基础
正是基于本文所描述的架构特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,数据中间层glider支持每天4000万的查询请求,平均响应时间在28毫秒(6月1日数据),足以满足未来一段时间内的业务增长需求。
尽管如此,整个系统中仍然存在很多不完善的地方。一个典型的例子莫过于各个分层之间使用短连接模式的HTTP协议进行通信。这样的策略直接导致在流量高峰期单机的TCP连接数非常高。所以说,一个良好的架构固然能够在很大程度上降低开发和维护的成本,但它自身一定是随着数据量和流量的变化而不断变化的。我相信,过不了几年,淘宝数据产品的技术架构一定会是另外的样子。