zoukankan      html  css  js  c++  java
  • [USACO19OPEN]Snakes

    题目:Snakes

    网址:https://www.luogu.com.cn/problem/P5424

    题目描述

    传说,数千年前圣帕特里克消灭了哞尔兰所有的蛇。然而,蛇们现在卷土重来了!圣帕特里克节是在每年的3月17日,所以Bessie要用彻底清除哞尔兰所有的蛇来纪念圣帕特里克。

    Bessie装备了一个捕网,用来捕捉 (N) 组排成一行的蛇( (1 leq N leq 400) )。Bessie必须按照这些组在这一行中出现的顺序捕捉每一组的所有蛇。每当Bessie抓完一组蛇之后,她就会将蛇放在笼子里,然后带着空的捕网开始捕捉下一组。

    一个大小为 (s) 的捕网意味着Bessie可以抓住任意包含 (g) 条的一组蛇,其中 (g leq s) 。然而,每当Bessie用大小为 (s) 的捕网抓住了一组 (g) 条蛇,就意味着浪费了 (s-g) 的空间。Bessie可以任意设定捕网的初始大小,并且她可以改变 (K) 次捕网大小( (1 leq K<N) )。

    请告诉Bessie她捕捉完所有组的蛇之后可以达到的总浪费空间的最小值。

    输入格式

    输入的第一行包含 (N)(K)

    第二行包含 (N) 个整数 (a_1, ldots ,a_N),其中 (a_i)((0 leq a_i leq 10^6))为第 (i) 组蛇的数量。

    输出格式

    输出一个整数,为Bessie抓住所有蛇的总浪费空间的最小值。

    输入输出样例

    输入 #1

    6 2
    7 9 8 2 3 2
    

    输出 #1

    3
    

    说明/提示

    Bessie可以设置她的捕网开始时大小为(7)。当她抓完第一组蛇之后,她将她的捕网的大小调整为(9),保持这个大小直到抓完第(4)组蛇,再将捕网大小调整为(3)。总浪费空间为 ((7-7)+(9-9)+(9-8)+(3-2)+(3-3)+(3-2)=3(7−7)+(9−9)+(9−8)+(3−2)+(3−3)+(3−2)=3)


    如果最开始没想DP的话,这道题我可能就束手无策。

    定义状态:

    1. 蛇组序号,这是阶段数;
    2. 剩余改变次数;
    3. 绳套大小;

    为什么将绳套大小写进去呢??由于当前状态下绳套大小不清楚,没办法估计价值。
    也就是说,如果少了这一维度,状态将难以转移。

    接着,想转移:一共有两种,改大小还是不改;
    如果改的话,(dp[i,j,k]=min(dp[i-1,j-1,p]|a[i-1]<=p<=n)+k-g[i])
    不改的话,直接继承,(dp[i,j,k]=min(dp[i-1,j,k])+k-g[i])
    预估时间复杂度应该过不了。

    我们尝试优化一下:
    按照我的经验,绳子的大小一定是其中一个蛇组的个数;
    也就是说,绳套大小 (kin{g})

    我们可以假设存在一个 (k otin{g}),使得结果最优,事实上,设当前的蛇组的个数为(t),则必有 (t<k)
    那么,当前绳套大小取 (t) 一定不使结果更差(因为(k)肯定不会是上一位的大小)。

    我们可以把蛇组离散化,决策时仅需要考虑离散化的结果即可。

    时间复杂度为(o(n^4)),好像还不够好。

    我们再观察到第一个转移中,我们其实不必枚举,只需要用另一个转移方程将该过程变为(T(1))即可。
    具体来说,就是维护(f[i,j])代表第(i)个蛇组、还剩(j)个更改机会中所有符合题意的状态的最小值。

    可以考虑初始化:(dp[0,j,k]=0,dp[1~n,j,k]=infty)

    完了吗??没有呢。

    这道题需要使用滚动数组优化空间!!!

    时间复杂度:(O(n^3))

    C ++ AC代码

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<vector>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    const int SIZE = 400 + 10, INF = 1 << 30;
    vector <int> table;
    int n, k, tot = 0, g[SIZE], c[SIZE], dp[SIZE][SIZE], f[SIZE];
    void discrete()
    {
    	sort(table.begin(), table.end());
    	tot = unique(table.begin(), table.end()) - table.begin();
    	return;
    }
    int query(int x)
    {
    	int L = 0, R = table.size() - 1, mid;
    	while(L < R)
    	{
    		mid = L + R >> 1;
    		if(table[mid] < x) L = mid + 1;
    		else R = mid;
    	}
    	return R;
    }
    int main()
    {
    	scanf("%d %d", &n, &k);
    	for(int i = 1; i <= n; ++ i) 
    	{
    		scanf("%d", &g[i]);
    		table.push_back(g[i]);
    	}
    	discrete();
    	for(int i = 1; i <= n; ++ i) c[i] = query(g[i]);
    	memset(f, 0, sizeof(f));
    	memset(dp, 0, sizeof(dp));
    	for(int i = 1; i <= n; ++ i)
    	{
    		for(int j = k; j >= 0; -- j)
    		{
    			f[j] = INF;
    			for(int x = 0; x < tot; ++ x)
    			{
    				int &ans = dp[j][x];
    				if(c[i] > x) ans = INF;
    				else
    				{
    					if(!j) ans = dp[j][x] + table[x] - g[i];
    					else ans = min(dp[j][x], f[j - 1]) + table[x] - g[i];
    					f[j] = min(f[j], ans);
    				}
    			}
    		}
    	}
    	printf("%d
    ", f[k]);
    	return 0;
    }
    

    总结回顾

    这道题实际上让我想到的另外一道题:https://www.cnblogs.com/zach20040914/p/13045850.html,总感觉这两道题惊人的相似。

  • 相关阅读:
    Silverlight 置于悬浮层之下 背景透明的方法
    做流媒体服务器需要什么(FMS)
    Silverlight WebClient 上传实现
    Silverlight WCF 初尝小结
    自动判断页面上的图片是否加载成功,不成功替换为默认图片
    HTTP PUSH技术原理,结合ASP.NET实现以及评述
    AJAX 请求队列实现
    关于COOKIES需要注意的一点
    Silverlight WCF 上传实现
    Silverlight 上传 大文件分块上传
  • 原文地址:https://www.cnblogs.com/zach20040914/p/13561028.html
Copyright © 2011-2022 走看看