zoukankan      html  css  js  c++  java
  • Debezium-Flink-Hudi:实时流式CDC

    1. 什么是Debezium

    Debezium是一个开源的分布式平台,用于捕捉变化数据(change data capture)的场景。它可以捕捉数据库中的事件变化(例如表的增、删、改等),并将其转为事件流,使得下游应用可以看到这些变化,并作出指定响应。

    2. Debezium常规使用架构

    根据Debezium官网[1]提供的常规使用的架构图:

     

    可以看到,在对RMSDB数据源做数据摄入时,使用的是Kafka Connect。Source Connector从数据库中获取记录并发送到Kafka;Sink Connectors将记录从Kafka Topic 传播到其他系统中。

    上图中分别对MySQL 与 PostgreSQL部署了connector:

    1. MySQL connector使用的是一个客户端库访问binlog
    2. PostgreSQL connector读取的是的一个replication stream

    另一种方式是仅部署Debezium Server(不带Kakfa),架构如下图所示:

    此方式使用的是Debezium自带的Source Connector。数据库端的事件会被序列化为JSON或Apache Avro格式,然后发送到其他消息系统如Kinesis、Apache Pulsar等。

    3. 部署Debezium

    在此次部署中,我们使用的均为AWS 资源:

    1. 使用AWS RDS MySQL作为源端数据库
    2. 使用AWS EKS 部署Kafka Connector
    3. 使用AWS MSK 部署Kafka
    4. Kafka下游为AWS EMR,运行Flink,实现增量载入Hudi表

    此处会省去创建AWS RDS、EKS、MSK 以及 EMR的过程,主要介绍搭建过程中的具体使用到的方法。

    3.1. AWS EKS部署Kafka Connector

    3.1.1. 安装Operator Framework 与 Strimzi Apache Kafka Operator

    先安装Operator Framework[2],它是一个用来管理k8s原生应用(Operator)的开源工具。然后安装Kafka可以使用Strimzi Apache Kafka Operator[3]

    安装最新版 operator-framework[4],当前版本为 0.18.1

    kubectl apply -f https://github.com/operator-framework/operator-lifecycle-manager/releases/download/v0.18.1/crds.yaml
    
    kubectl apply -f https://github.com/operator-framework/operator-lifecycle-manager/releases/download/v0.18.1/olm.yaml

    安装Strimzi Apache Kafka Operator:

    kubectl apply -f https://operatorhub.io/install/strimzi-kafka-operator.yaml
    
    $ kubectl get csv -n operators
    NAME                               DISPLAY   VERSION   REPLACES                           PHASE
    strimzi-cluster-operator.v0.23.0   Strimzi   0.23.0    strimzi-cluster-operator.v0.22.1   Succeeded

    3.1.2. 打包Debezium的MySQL Kafka Connector

    下面部署Debezium 的 MySQL Kafka Connector。

    源端数据库为MySQL,所以下载 debezium-connector-mysql,版本为1.5.0.Final:

    wget https://repo1.maven.org/maven2/io/debezium/debezium-connector-mysql/1.5.0.Final
    /debezium-connector-mysql-1.5.0.Final-plugin.tar.gz
    
    tar -zxvf debezium-connector-mysql-1.5.0.Final-plugin.tar.gz

    然后我们build一个自定义的debezium-connector-mysql Docker镜像:

    创建Dockerfile:

    FROM strimzi/kafka:0.20.1-kafka-2.6.0
    USER root:root
    RUN mkdir -p /opt/kafka/plugins/debezium
    COPY ./debezium-connector-mysql/ /opt/kafka/plugins/debezium/
    USER 1001

    Bulid镜像并推送:

    # 登录aws ecr
    > aws ecr get-login --no-include-email
    
    # Build 镜像
    > sudo docker build . -t {ECR_Repository}/connect-debezium
    
    # 推送到ECR
    > sudo docker push {ECR_Repository}/connect-debezium

    3.1.3. 部署 Debezium MySQL Connector

    $ cat debezium-mysql-connector.yaml
    apiVersion: kafka.strimzi.io/v1beta2
    kind: KafkaConnect
    metadata:
      name: debezium-connector
      namespace: kafka
    #  annotations:
    #  # use-connector-resources configures this KafkaConnect
    #  # to use KafkaConnector resources to avoid
    #  # needing to call the Connect REST API directly
    #    strimzi.io/use-connector-resources: "true"
    spec:
      version: 2.8.0
      replicas: 1
      bootstrapServers: xxxx
      image: xxxxxx.dkr.ecr.cn-north-1.amazonaws.com.cn/connect-debezium:latest
      config:
        group.id: connect-cluster
        offset.storage.topic: connect-cluster-offsets
        config.storage.topic: connect-cluster-configs
        status.storage.topic: connect-cluster-status
        # -1 means it will use the default replication factor configured in the broker
        config.storage.replication.factor: -1
        offset.storage.replication.factor: -1
    status.storage.replication.factor: -1
    
    $ kubectl apply -f debezium-mysql-connector.yaml
    
    $ kubectl get pods -n kafka
    NAME                                          READY   STATUS    RESTARTS   AGE
    debezium-connector-connect-69c98cc784-kqvww   1/1     Running   0          5m44s

    替换其中的bootstrapServers为AWS MSK bootstrapServers;image为3.1.2 步骤中打包的镜像地址。

    使用本地代理访问Kafka Connect 服务,并验证可用 Connectors:

    $ kubectl port-forward service/debezium-connector-connect-api 8083:8083 -n kafka
    
    $ curl localhost:8083/connector-plugins
    [{
        "class": "io.debezium.connector.mysql.MySqlConnector",
        "type": "source",
        "version": "1.5.0.Final"
    }, {
        "class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
        "type": "sink",
        "version": "2.6.0"
    }
    …
    ]

    编写 MySQL Connector 配置文件:

    $ cat mysql-connector-tang.json
    {
      "name": "mysql-connector",
      "config": {
        "connector.class": "io.debezium.connector.mysql.MySqlConnector",
        "tasks.max": "1",
        "database.hostname": "xxxxx",
        "database.port": "3306",
        "database.user": "xxxx",
        "database.password": "xxxx",
        "database.server.id": "184055",
        "database.server.name": "mysql-tang",
        "database.include.list": "tang ",
        "database.history.kafka.bootstrap.servers": "xxxxx",
        "database.history.kafka.topic": " changes.tang"
      }
    }

    将配置推送到 Kafka Connector:

    $ cat mysql-connector.json | curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json" localhost:8083/connectors/ -d @-
    HTTP/1.1 201 Created
    Date: Fri, 21 May 2021 11:00:25 GMT
    Location: http://localhost:8083/connectors/mysql-connector-tang
    Content-Type: application/json
    Content-Length: 733
    Server: Jetty(9.4.24.v20191120)
    
    # 验证已经创建connector
    $ curl localhost:8083/connectors/
    ["mysql-connector-tang"]

    3.1.4. 验证

    部署完成后,在AWS RDS MySQL 中创建库与测试表,并写入测试数据。此时在AWS MSK中未发现对应 events生成。

    查看connector 的pod 日志:

    $ kubectl logs debezium-connector-connect-69c98cc784-kqvww -n kafka
    ….
    io.debezium.DebeziumException: The MySQL server is not configured to use a ROW binlog_format, which is required for this connector to work properly. Change the MySQL configuration to use a binlog_format=ROW and restart the connector.
            at io.debezium.connector.mysql.MySqlConnectorTask.validateBinlogConfiguration(MySqlConnectorTask.java:203)
            at io.debezium.connector.mysql.MySqlConnectorTask.start(MySqlConnectorTask.java:85)
            at io.debezium.connector.common.BaseSourceTask.start(BaseSourceTask.java:130)

    可以看到MySQLConnector需要MySQL server 配置 binlog_format 为 ROW。

    修改此配置后,再次通过进行kafka-console-consumer.sh 进行验证,即可看到测试数据库中的所有事件:

    $ ./kafka-console-consumer.sh --bootstrap-server xxxx --topic schema-changes.inventory --from-beginning
    …
    {
      "source" : {
        "server" : "mysql-tang"
      },
      "position" : {
        "ts_sec" : 1621585297,
        "file" : "mysql-bin-changelog.000015",
        "pos" : 511,
        "snapshot" : true
      },
      "databaseName" : "inventory",
      "ddl" : "CREATE DATABASE `inventory` CHARSET latin1 COLLATE latin1_swedish_ci",
      "tableChanges" : [ ]
    }
    …
    {
      "source" : {
        "server" : "mysql-tang"
      },
      "position" : {
        "ts_sec" : 1621585297,
        "file" : "mysql-bin-changelog.000015",
        "pos" : 511,
        "snapshot" : true
      },
      "databaseName" : "inventory",
      "ddl" : "CREATE TABLE `test` (
      `id` int(11) DEFAULT NULL,
      `name` varchar(10) DEFAULT NULL
    ) ENGINE=InnoDB DEFAULT CHARSET=latin1",
      "tableChanges" : [ {
        "type" : "CREATE",
        "id" : ""inventory"."test"",
        "table" : {
          "defaultCharsetName" : "latin1",
          "primaryKeyColumnNames" : [ ],
          "columns" : [ {
            "name" : "id",
            "jdbcType" : 4,
            "typeName" : "INT",
            "typeExpression" : "INT",
            "charsetName" : null,
            "length" : 11,
            "position" : 1,
            "optional" : true,
            "autoIncremented" : false,
            "generated" : false
          }, {
            "name" : "name",
            "jdbcType" : 12,
            "typeName" : "VARCHAR",
            "typeExpression" : "VARCHAR",
            "charsetName" : "latin1",
            "length" : 10,
            "position" : 2,
            "optional" : true,
            "autoIncremented" : false,
            "generated" : false
          } ]
        }
      } ]
    }

    4. Flink 消费Debezium 类型消息

    RMDB数据经Debezium Connector写入Kafka后,先由Flink进行消费。可以参考Flink官网中对Debezium格式的处理代码[5]

    CREATE TABLE topic_products (
      -- schema is totally the same to the MySQL "products" table
      id BIGINT,
      name STRING,
      description STRING,
      weight DECIMAL(10, 2)
    ) WITH (
     'connector' = 'kafka',
     'topic' = 'products_binlog',
     'properties.bootstrap.servers' = 'localhost:9092',
     'properties.group.id' = 'testGroup',
     -- using 'debezium-json' as the format to interpret Debezium JSON messages
     -- please use 'debezium-avro-confluent' if Debezium encodes messages in Avro format
     'format' = 'debezium-json'
    )

    5. 写入Hudi表

    RMDB数据经Debezium Connector写入Kafka后,接下来通过 Flink 将流式数据写入到一张Hudi表,实现实时数据到Hudi。此部分可以参考Hudi官网对Flink支持的代码[6]

    CREATE TABLE t1(
      uuid VARCHAR(20), -- you can use 'PRIMARY KEY NOT ENFORCED' syntax to mark the field as record key
      name VARCHAR(10),
      age INT,
      ts TIMESTAMP(3),
      `partition` VARCHAR(20)
    )
    PARTITIONED BY (`partition`)
    WITH (
      'connector' = 'hudi',
      'path' = 'table_base_path',
      'write.tasks' = '1', -- default is 4 ,required more resource
      'compaction.tasks' = '1', -- default is 10 ,required more resource
      'table.type' = 'MERGE_ON_READ' -- this creates a MERGE_ON_READ table, by default is COPY_ON_WRITE
    );

    5.1. 依赖包问题

    在这个过程中,有一点需要注意的是,在使用Hudi官网提到的 hudi-flink-bundle_2.11-0.7.0.jar (或hudi-flink-bundle_2.11-0.8.0.jar) 时,会遇到以下问题:

    Caused by: org.apache.flink.table.api.ValidationException: Could not find any factory for identifier 'hudi' that implements 'org.apache.flink.table.factories.DynamicTableFactory' in the classpath.

    从报错来看,hudi-flink-bundle_2.11-0.7.0.jar版本并未提供flink 与 hudi 通过 “connector=hudi” 集成的功能。但是在最新版的Hudi tutorial中有提到(当前为hudi 0.9 版本)需要hudi-flink-bundle_2.1?-*.*.*.jar。

    于是笔者尝试了手动编译hudi 0.9 版本,build出hudi-flink-bundle_2.11-0.9.0-SNAPSHOT.jar。但是在编译过程中遇到以下问题:

    [ERROR] Failed to execute goal on project hudi-hadoop-mr: Could not resolve dependencies for project org.apache.hudi:hudi-hadoop-mr:jar:0.9.0-SNAPSHOT: Failed to collect dependencies at org.apache.hive:hive-exec:jar:core:2.3.2 -> org.apache.calcite:calcite-core:jar:1.10.0 -> org.pentaho:pentaho-aggdesigner-algorithm:jar:5.1.5-jhyde: Failed to read artifact descriptor for org.pentaho:pentaho-aggdesigner-algorithm:jar:5.1.5-jhyde: Could not transfer artifact org.pentaho:pentaho-aggdesigner-algorithm:pom:5.1.5-jhyde from/to maven-default-http-blocker (http://0.0.0.0/): Blocked mirror for repositories: [nexus-aliyun (http://maven.aliyun.com/nexus/content/groups/public/, default, releases), datanucleus (http://www.datanucleus.org/downloads/maven2, default, releases), glassfish-repository (http://maven.glassfish.org/content/groups/glassfish, default, disabled), glassfish-repo-archive (http://maven.glassfish.org/content/groups/glassfish, default, disabled), apache.snapshots (http://repository.apache.org/snapshots, default, snapshots), central (http://repo.maven.apache.org/maven2, default, releases), conjars (http://conjars.org/repo, default, releases+snapshots)] -> [Help 1]

    此问题说明的是无法从提供的任一maven 源中拉取org.pentaho:pentaho-aggdesigner-algorithm:jar:5.1.5-jhyde 包。

    解决此问题的方法是:手动下载此jar包(位置为https://public.nexus.pentaho.org/repository/proxy-public-3rd-party-release/org/pentaho/pentaho-aggdesigner-algorithm/5.1.5-jhyde/pentaho-aggdesigner-algorithm-5.1.5-jhyde.jar

    ),并install 到本地 maven仓库中,再修改对应编译模块的pom文件,加上此依赖说明即可。

    Maven install package的命令如:

    ../apache-maven-3.8.1/bin/mvn install:install-file -DgroupId=org.pentaho -DartifactId=pentaho-aggdesigner-algorithm -Dversion=5.1.5-jhyde -Dpackaging=jar -Dfile=/home/hadoop/.m2/repository/org/pentaho/pentaho-aggdesigner-algorithm/5.15-jhyde/pentaho-aggdesigner-algorithm-5.15-jhyde.jar

    此过程完成后,可以成功解决flink sql 映射 hudi 表的问题。

    5.2. Flink 版本问题

    在AWS EMR 最新版 emr-5.33.0 下,Flink版本为1.12.1,而hudi 0.9 版本编译所需的Flink版本为1.12.2。

    笔者在编译0.9 版本 hudi 的 hudi-flink-bundle_2.11-0.9.0-SNAPSHOT.jar后,在EMR-5.33.0 下使用,遇到版本不一致报出的 NoSuchMethod问题。尝试各种jar包替换后仍未解决。

    所以最终使用的是自建Flink 1.12.2 版本集群。

    6. Flink消费Debezium与写入Hudi测试

    使用简单的测试表进行测试。

    MySQL中建表:

    create table customer(id varchar(20), name varchar(10), age int, user_level varchar(10));

    启动Flink程序,主体代码为:

    package cdc
    
    import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
    import org.apache.flink.table.api.{EnvironmentSettings, SqlDialect, TableResult}
    import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
    
    object DebeziumHudi {
    
      def main(args: Array[String]): Unit = {
        // Env settings
        val senv = StreamExecutionEnvironment.getExecutionEnvironment
        val blinkStreamSetting = EnvironmentSettings.newInstance().inStreamingMode().useBlinkPlanner().build()
        val tableEnv = StreamTableEnvironment.create(senv, blinkStreamSetting)
        tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT)
    
        val table_base_path = args(0)
        val table_type = args(1)
    
        // kafka config
        val topicName = "my-con.tangdb.customer"
        val bootstrapServers = "xxxx:9092"
        val groupID = "group_mysql_tangdb"
    
        // create kafka table
        val create_kafka_table_sql = "CREATE TABLE customer(
    " +
          "id VARCHAR(20),
    " +
          "name VARCHAR(10),
    " +
          "age int,
    " +
          "user_level VARCHAR(20) 
    " +
          ") WITH (
    " +
          "  'connector' = 'kafka',
    " +
          "  'topic' = '" + topicName + "',
    " +
          "  'properties.bootstrap.servers' = '" + bootstrapServers + "',
    " +
          "  'properties.group.id' = '" + groupID + "',
    " +
          "  'debezium-json.schema-include' = 'true',
    " +
          "  'format' = 'debezium-json'
    " +
          ")"
    
    
        // hudi table config
        //val table_base_path = "s3://xxx-hudi/customer/"
        //val table_type = "COPY_ON_WRITE"
    
        // create hudi table
        val create_hudi_table_sql = "CREATE TABLE customers_hudi(
    " +
          "id VARCHAR(20) PRIMARY KEY NOT ENFORCED,
    " +
          "name VARCHAR(10),
    " +
          "age INT,
    " +
          "ts TIMESTAMP(3), 
    " +
          "`user_level` VARCHAR(20) ) 
    " +
          "PARTITIONED BY (user_level) 
    " +
          "WITH (
    " +
          "  'connector' = 'hudi',
    " +
          "  'path' = '" + table_base_path +"',
    " +
          "  'table.type' = '" + table_type + "',
    " +
          "  'read.tasks' = '1',
    " +
          "  'write.tasks' = '1',
    " +
          "  'compaction.tasks' = '1',
    " +
          "  'write.batch.size' = '8',
    " +
          "  'compaction.delta_commits' = '2',
    " +
          "  'compaction.delta_seconds' = '10' " +
          ")"
    
        // do sql query
        tableEnv.executeSql(create_kafka_table_sql)
        tableEnv.executeSql(create_hudi_table_sql)
        tableEnv.executeSql("insert into customers_hudi (id, name, age, ts, user_level) select id, name, age, current_timestamp, user_level from customer")
    
      }
    
    }

    提交Flink程序后正常运行:

    使用MySQL procedure 不断向customer 表中写入数据。可以观察到hudi路径下出现对应分区路径,并出现结果文件:

    $ hdfs dfs -ls s3://xxx-hudi/customer/
    Found 3 items
    drwxrwxrwx   - hadoop hadoop          0 1970-01-01 00:00 s3://tang-hudi/customer/.hoodie
    drwxrwxrwx   - hadoop hadoop          0 1970-01-01 00:00 s3://tang-hudi/customer/lv2
    drwxrwxrwx   - hadoop hadoop          0 1970-01-01 00:00 s3://tang-hudi/customer/lv3
    
    $ hdfs dfs -ls s3://xxx-hudi/customer/lv2/
    Found 2 items
    -rw-rw-rw-   1 hadoop hadoop         93 2021-05-24 13:52 s3://tang-hudi/customer/lv2/.hoodie_partition_metadata
    -rw-rw-rw-   1 hadoop hadoop    2092019 2021-05-24 14:00 s3://tang-hudi/customer/lv2/e8195cc8-aae4-4462-8605-7f4eceac90ce_0-1-0_20210524134250.parquet

    7. 验证hudi表

    首先使用 AWS S3 Select 查询目标parquet文件,可以拿到正确结果:

     

    但是,而后分别使用了 SparkSQL与 Hive对Hudi表地址进行映射并执行读取操作,结果均失败。暂未得出失败原因。

    初步判断可能与包环境依赖有关。由于最新版AWS EMR emr-5.33.0 下,Flink版本为1.12.1,而hudi 0.9 版本编译所需的Flink版本为1.12.2。所以笔者使用了自建的Flink集群,当时仅考虑了Flink与Hudi版本保持一致,但未将Spark与Hive版本纳入考虑范围内,所以可能导致了此原因。

    8. 总结

    总体来看,Debezium是一个非常方便部署使用的CDC工具,可以有效地将RMSDB数据抽取到消息系统中,供不同的下游应用消费。而Flink直接对接Debezium与Hudi的功能,极大方便了数据湖场景下的实时数据ingestion。

    References

    [1] https://debezium.io/documentation/reference/1.5/architecture.html

    [2] https://operatorhub.io

    [3] https://operatorhub.io/operator/strimzi-kafka-operator

    [4] https://github.com/operator-framework/operator-lifecycle-manager/releases/

    [5] https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/connectors/table/formats/debezium/

    [6] https://hudi.apache.org/docs/flink-quick-start-guide.html

  • 相关阅读:
    docker中安装ssh服务
    JStorm第一个程序WordCount详解
    centos6.7 安装Docker
    mysql 自连接查询数据
    display属性
    如何书写高效的css样式
    link和@import的区别
    div+css命名规则
    MATLAB的一些小技巧
    高等工程数学 线性规划部分 作业
  • 原文地址:https://www.cnblogs.com/zackstang/p/14806889.html
Copyright © 2011-2022 走看看