Knights of the Round Table
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 8178 | Accepted: 2578 |
Description
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Input
The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).
The input is terminated by a block with n = m = 0 .
The input is terminated by a block with n = m = 0 .
Output
For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.
Sample Input
5 5 1 4 1 5 2 5 3 4 4 5 0 0
Sample Output
2
这道题目是求点双连通分量,此题解题步骤:1,找点连通分量,2,染色找奇圈
具体看代码:
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 #include<cstdio> 2 #include<cmath> 3 #include<iostream> 4 #include<algorithm> 5 #include<cstring> 6 #include<vector> 7 #include<map> 8 #include<list> 9 #include<set> 10 #include<queue> 11 #include<stack> 12 #include<deque> 13 using namespace std; 14 15 #define min(a,b) (a>b?b:a) 16 #define max(a,b) (a>b?a:b) 17 #define INF 9999999 18 #define eps 1e-7 19 #define Maxn 1001 20 21 int low[Maxn]; //最低深度优先数 22 int dfn[Maxn],tempdfn; //深度优先数 23 int vis[Maxn]; 24 int A[Maxn][Maxn]; //存图 25 int iscut[Maxn]; 26 int bccno[Maxn],bcc_cnt; //标记点连通分量,连通分量的数目 27 struct Edge 28 { 29 int u,v; 30 Edge(int s,int t):u(s),v(t) 31 {} 32 }; 33 stack<Edge>s; //栈,存边 34 int odd[Maxn]; //判断是否是奇图 35 int color[Maxn]; //染色 36 int n,m; 37 vector<int>G[Maxn],bcc[Maxn]; 38 39 void dfs(int u,int father) 40 { 41 vis[u]=1; 42 low[u]=dfn[u]=++tempdfn; //low-----1 43 int child = 0; 44 for(int j=0;j<G[u].size();j++) 45 { 46 int v=G[u][j]; 47 Edge e=Edge(u,v); 48 if(!vis[v]) 49 { 50 child++; 51 s.push(e); 52 dfs(v,u); 53 low[u]=min(low[u],low[v]); //low------2 54 if(low[v]>=dfn[u]) //找到关节点,u为关节点 55 { 56 iscut[u]=1; 57 bcc_cnt++;bcc[bcc_cnt].clear(); 58 for(;;) 59 { 60 Edge t=s.top();s.pop(); //出栈直到t.u==u,t.v==v 61 if(bccno[t.u]!=bcc_cnt){ 62 bcc[bcc_cnt].push_back(t.u); 63 bccno[t.u]=bcc_cnt; 64 } 65 if(bccno[t.v]!=bcc_cnt){ 66 bcc[bcc_cnt].push_back(t.v); 67 bccno[t.v]=bcc_cnt; 68 } 69 if(t.u==u&&t.v==v)break; 70 } 71 } 72 } 73 else if(dfn[v]<dfn[u]&&v!=father) 74 { 75 low[u]=min(low[u],dfn[v]); //low-----3,以上low---1,low---2,用来求low[u] 76 } 77 } 78 if(father<0&&child==1)iscut[u]=0; 79 } 80 81 void find_bcc(int n) 82 { 83 memset(vis,0,sizeof(vis)); 84 memset(low,0,sizeof(low)); 85 memset(dfn,0,sizeof(dfn)); 86 memset(iscut,0,sizeof(iscut)); 87 memset(bccno,0,sizeof(bccno)); 88 tempdfn=bcc_cnt=0; 89 for(int i=0;i<n;i++) 90 { 91 if(!vis[i]) 92 { 93 dfs(i,-1); 94 } 95 } 96 } 97 98 int bipartite(int u,int kind) 99 { 100 int i; 101 for(i=0;i<G[u].size();i++) 102 { 103 int v=G[u][i]; 104 if(bccno[v]!=kind)continue; 105 if(color[v]==color[u])return false; 106 if(!color[v]) 107 { 108 color[v]=3-color[u]; 109 if(!bipartite(v,kind))return false; 110 } 111 } 112 return true; 113 } 114 115 int main() 116 { 117 int cas = 0; 118 while(scanf("%d%d",&n,&m)!=EOF) 119 { 120 if(n==0)break; 121 int i; 122 for( i=0;i<n;i++)G[i].clear(); 123 memset(A,0,sizeof(A)); 124 for(i=0;i<m;i++) 125 { 126 int u,v; 127 scanf("%d%d",&u,&v); 128 u--,v--; 129 A[u][v]=A[v][u]=1; 130 } 131 for(int u=0;u<n;u++) 132 { 133 for(int v=u+1;v<n;v++) 134 { 135 if(!A[u][v]) 136 { 137 G[u].push_back(v); 138 G[v].push_back(u); 139 } 140 } 141 } 142 find_bcc(n); 143 memset(odd,0,sizeof(odd)); 144 // for(i=1;i<=bcc_cnt;i++) 145 // { 146 // printf("size:%d ",bcc[i].size()); 147 // } 148 for(i=1;i<=bcc_cnt;i++) 149 { 150 memset(color,0,sizeof(color)); 151 for(int j=0;j<bcc[i].size();j++) 152 { 153 bccno[bcc[i][j]]=i; //对同一个连通分量中的点进行标记 154 // printf("%d ",bcc[i][j]); 155 } 156 int u=bcc[i][0]; 157 color[u]=1; 158 if(!bipartite(u,i)) //能够染色,返回false,有奇圈 159 { 160 for(int j=0;j<bcc[i].size();j++) 161 { 162 odd[bcc[i][j]]=1; //需要保留下来的点 163 // printf("%d ",bcc[i][j]); 164 } 165 } 166 } 167 int ans=n; 168 for(i=0;i<n;i++) 169 { 170 if(odd[i])ans--; 171 } 172 printf("%d ",ans); 173 } 174 return 0; 175 }