zoukankan      html  css  js  c++  java
  • 可以用 Python 编程语言做哪些神奇好玩的事情?

    作者:造数科技
    链接:https://www.zhihu.com/question/21395276/answer/219747752


    使用Python绘图

    我们先来看看,能画出哪样的图

     

    更强大的是,每张图片下都有提供源代码,可以直接拿来用,修改参数即可。

    """
    ===============
    Basic pie chart
    ===============
    
    Demo of a basic pie chart plus a few additional features.
    
    In addition to the basic pie chart, this demo shows a few optional features:
    
        * slice labels
        * auto-labeling the percentage
        * offsetting a slice with "explode"
        * drop-shadow
        * custom start angle
    
    Note about the custom start angle:
    
    The default ``startangle`` is 0, which would start the "Frogs" slice on the
    positive x-axis. This example sets ``startangle = 90`` such that everything is
    rotated counter-clockwise by 90 degrees, and the frog slice starts on the
    positive y-axis.
    """
    import matplotlib.pyplot as plt
    
    # Pie chart, where the slices will be ordered and plotted counter-clockwise:
    labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
    sizes = [15, 30, 45, 10]
    explode = (0, 0.1, 0, 0)  # only "explode" the 2nd slice (i.e. 'Hogs')
    
    fig1, ax1 = plt.subplots()
    ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
            shadow=True, startangle=90)
    ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
    
    plt.show()
    """
    Demonstrates the visual effect of varying blend mode and vertical exaggeration
    on "hillshaded" plots.
    
    Note that the "overlay" and "soft" blend modes work well for complex surfaces
    such as this example, while the default "hsv" blend mode works best for smooth
    surfaces such as many mathematical functions.
    
    In most cases, hillshading is used purely for visual purposes, and *dx*/*dy*
    can be safely ignored. In that case, you can tweak *vert_exag* (vertical
    exaggeration) by trial and error to give the desired visual effect. However,
    this example demonstrates how to use the *dx* and *dy* kwargs to ensure that
    the *vert_exag* parameter is the true vertical exaggeration.
    """
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.cbook import get_sample_data
    from matplotlib.colors import LightSource
    
    dem = np.load(get_sample_data('jacksboro_fault_dem.npz'))
    z = dem['elevation']
    
    #-- Optional dx and dy for accurate vertical exaggeration --------------------
    # If you need topographically accurate vertical exaggeration, or you don't want
    # to guess at what *vert_exag* should be, you'll need to specify the cellsize
    # of the grid (i.e. the *dx* and *dy* parameters).  Otherwise, any *vert_exag*
    # value you specify will be relative to the grid spacing of your input data
    # (in other words, *dx* and *dy* default to 1.0, and *vert_exag* is calculated
    # relative to those parameters).  Similarly, *dx* and *dy* are assumed to be in
    # the same units as your input z-values.  Therefore, we'll need to convert the
    # given dx and dy from decimal degrees to meters.
    dx, dy = dem['dx'], dem['dy']
    dy = 111200 * dy
    dx = 111200 * dx * np.cos(np.radians(dem['ymin']))
    #-----------------------------------------------------------------------------
    
    # Shade from the northwest, with the sun 45 degrees from horizontal
    ls = LightSource(azdeg=315, altdeg=45)
    cmap = plt.cm.gist_earth
    
    fig, axes = plt.subplots(nrows=4, ncols=3, figsize=(8, 9))
    plt.setp(axes.flat, xticks=[], yticks=[])
    
    # Vary vertical exaggeration and blend mode and plot all combinations
    for col, ve in zip(axes.T, [0.1, 1, 10]):
        # Show the hillshade intensity image in the first row
        col[0].imshow(ls.hillshade(z, vert_exag=ve, dx=dx, dy=dy), cmap='gray')
    
        # Place hillshaded plots with different blend modes in the rest of the rows
        for ax, mode in zip(col[1:], ['hsv', 'overlay', 'soft']):
            rgb = ls.shade(z, cmap=cmap, blend_mode=mode,
                           vert_exag=ve, dx=dx, dy=dy)
            ax.imshow(rgb)
    
    # Label rows and columns
    for ax, ve in zip(axes[0], [0.1, 1, 10]):
        ax.set_title('{0}'.format(ve), size=18)
    for ax, mode in zip(axes[:, 0], ['Hillshade', 'hsv', 'overlay', 'soft']):
        ax.set_ylabel(mode, size=18)
    
    # Group labels...
    axes[0, 1].annotate('Vertical Exaggeration', (0.5, 1), xytext=(0, 30),
                        textcoords='offset points', xycoords='axes fraction',
                        ha='center', va='bottom', size=20)
    axes[2, 0].annotate('Blend Mode', (0, 0.5), xytext=(-30, 0),
                        textcoords='offset points', xycoords='axes fraction',
                        ha='right', va='center', size=20, rotation=90)
    fig.subplots_adjust(bottom=0.05, right=0.95)
    
    plt.show()


    图片来自Matplotlib官网 Thumbnail gallery

    这是图片的索引,可以看看有没有自己需要的

     
    然后在Github上有非常漂亮的可视化作品 ioam/holoviews
     
    Stop plotting your data - annotate your data and let it visualize itself.

    http://holoviews.org/getting_started/Gridded_Datasets.html

    http://holoviews.org/gallery/demos/bokeh/scatter_economic.html

    http://holoviews.org/gallery/demos/bokeh/verhulst_mandelbrot.html

     

    同样每张图都有代码讲解,相信你一定可以看懂。

    Python可以做的事情真的太多了,不要犹豫,赶紧画起来吧。

    更多精彩,关注造数

  • 相关阅读:
    Python之while循环
    Python之分支语句
    Python之变量
    Python开挂的吧!
    xshell 连接 ubuntu 16.04报错
    js中的script标签
    javascript中的事件学习总结
    【JAVAWEB学习笔记】04_JavaScript
    【JAVAWEB学习笔记】03_JavaScript
    【JAVAWEB学习笔记】02_HTML&CSS
  • 原文地址:https://www.cnblogs.com/zaoshu/p/7513775.html
Copyright © 2011-2022 走看看