zoukankan      html  css  js  c++  java
  • 后端程序员之路 18、朴素贝叶斯模型(Naive Bayesian Model,NBM)

    贝叶斯推断及其互联网应用(一):定理简介 - 阮一峰的网络日志
    http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html

    贝叶斯推断及其互联网应用(二):过滤垃圾邮件 - 阮一峰的网络日志
    http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_two.html

    贝叶斯推断及其互联网应用(三):拼写检查 - 阮一峰的网络日志
    http://www.ruanyifeng.com/blog/2012/10/spelling_corrector.html

    p(A|B)                                       \
    = frac{p(B|A)p(A)}{p(B)}                    \
    = frac{p(B|A)p(A)}{p(B|A)p(A)-p(B|A')p(A')} \
    = p(A)frac{p(B|A)}{p(B)}
    后验概率 = 先验概率 x 调整因子

    算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) - T2噬菌体 - 博客园
    http://www.cnblogs.com/leoo2sk/archive/2010/09/17/1829190.html

    朴素贝叶斯分类器的应用 - 阮一峰的网络日志
    http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html

    总结:
    1、贝叶斯理论用于过滤垃圾邮件和拼写检查效果不错,同理可延伸到文章筛选等场景
    2、朴素贝叶斯分类器,假设所有特征都彼此独立,训练后,可以有效的对新样本进行分类

  • 相关阅读:
    禁止后台运行
    图标的圆角和光晕效果和启动画面
    IOS 开发 有关iPhone程序的安装目录UUID 唯一标识
    NSOperation与performSelectorOnMainThread
    Java web开发学习规划
    JAVA类集
    java 四种xml操作方式的基本使用方法
    用JDOM操作XML文件
    java web 学习
    过去的,将来的
  • 原文地址:https://www.cnblogs.com/zapline/p/6589841.html
Copyright © 2011-2022 走看看