题目链接:https://vjudge.net/problem/POJ-2886
题目大意:
N个人围成一圈第一个人跳出圈后会告诉你下一个谁跳出来跳出来的人(如果他手上拿的数为正数,从他左边数x个,反之,从他右边数x个),如果一个人是第 i 个跳出来的,他所得糖数为 i 的所有因子个数,求最先出序列且得到糖最多的那个人的名字和糖的数量。
分析:
最先出序列且得到糖最多的那个人的跳出序号就是不大于N的最大反素数,由于此题数据量不大,可以自行打表。然后就是模拟跳出圈子操作,与POJ2828如出一辙。
代码如下:
1 #pragma GCC optimize("Ofast") 2 #include <bits/stdc++.h> 3 using namespace std; 4 5 #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0); 6 #define Rep(i,n) for (int i = 0; i < (n); ++i) 7 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 8 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 9 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 10 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 11 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 12 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 13 14 #define pr(x) cout << #x << " = " << x << " " 15 #define prln(x) cout << #x << " = " << x << endl 16 17 #define LOWBIT(x) ((x)&(-x)) 18 19 #define ALL(x) x.begin(),x.end() 20 #define INS(x) inserter(x,x.begin()) 21 22 #define ms0(a) memset(a,0,sizeof(a)) 23 #define msI(a) memset(a,inf,sizeof(a)) 24 #define msM(a) memset(a,-1,sizeof(a)) 25 26 #define MP make_pair 27 #define PB push_back 28 #define ft first 29 #define sd second 30 31 template<typename T1, typename T2> 32 istream &operator>>(istream &in, pair<T1, T2> &p) { 33 in >> p.first >> p.second; 34 return in; 35 } 36 37 template<typename T> 38 istream &operator>>(istream &in, vector<T> &v) { 39 for (auto &x: v) 40 in >> x; 41 return in; 42 } 43 44 template<typename T1, typename T2> 45 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 46 out << "[" << p.first << ", " << p.second << "]" << " "; 47 return out; 48 } 49 50 typedef long long LL; 51 typedef unsigned long long uLL; 52 typedef pair< double, double > PDD; 53 typedef pair< int, int > PII; 54 typedef pair< string, int > PSI; 55 typedef set< int > SI; 56 typedef vector< int > VI; 57 typedef map< int, int > MII; 58 typedef pair< LL, LL > PLL; 59 typedef vector< LL > VL; 60 typedef vector< VL > VVL; 61 const double EPS = 1e-10; 62 const int inf = 1e9 + 9; 63 const LL mod = 1e9 + 7; 64 const int maxN = 5e5 + 7; 65 const LL ONE = 1; 66 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 67 const LL oddBits = 0x5555555555555555; 68 69 int N, K; 70 PSI player[maxN]; 71 72 #define lson l , mid , rt << 1 73 #define rson mid + 1 , r , rt << 1 | 1 74 75 struct SegmentTree{ 76 int st[maxN << 2]; 77 78 inline void pushUp(int rt) { 79 st[rt] = st[rt << 1] + st[rt << 1 | 1]; 80 } 81 82 inline void pushDown(int rt) { } 83 84 inline void build(int l, int r, int rt) { 85 if(l >= r) { 86 st[rt] = 1; 87 return; 88 } 89 int mid = (l + r) >> 1; 90 build(lson); 91 build(rson); 92 pushUp(rt); 93 } 94 95 // 把相应位置设为 0 96 inline void update(int x, int l, int r, int rt) { 97 if(l >= r) { 98 st[rt] = 0; 99 return; 100 } 101 int mid = (l + r) >> 1; 102 if(x <= mid) update(x, lson); 103 else update(x, rson); 104 pushUp(rt); 105 } 106 107 // 查找从 1 开始和为 x 的区间 [1, r] 的右端点 r 108 inline int querySum(LL x, int l, int r, int rt) { 109 if(l >= r) return r; 110 int mid = (l + r) >> 1; 111 if(st[rt << 1] >= x) return querySum(x, lson); 112 else return querySum(x - st[rt << 1], rson); 113 } 114 }; 115 SegmentTree segTr; 116 117 // 反素数与对应因子个数 118 int antiPrimes[36] = {1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720,45360,50400,55440,83160,110880,166320,221760,277200,332640,498960,500001}; 119 int factor[36] = {1,2,3,4,6,8,9,10,12,16,18,20,24,30,32,36,40,48,60,64,72,80,84,90,96,100,108,120,128,144,160,168,180,192,200,1314521}; 120 121 int main(){ 122 INIT(); 123 while(cin >> N >> K) { 124 int ans = upper_bound(antiPrimes, antiPrimes + 36, N) - antiPrimes - 1; 125 // 第 antiPrimes[ans] 个人能拿到最多糖 126 int newN = N; 127 For(i, 1, N) cin >> player[i]; 128 segTr.build(1, N, 1); 129 130 int tmp; 131 while(antiPrimes[ans]--) { 132 tmp = segTr.querySum(K, 1, N, 1); 133 segTr.update(tmp, 1, N, 1); 134 135 // 计算下一个K 136 K += player[tmp].sd; 137 if(player[tmp].sd > 0) --K; 138 if(--newN == 0) break; 139 --K; 140 K = ((K % newN) + newN) % newN; 141 ++K; 142 } 143 cout << player[tmp].ft << " " << factor[ans] << endl; 144 } 145 return 0; 146 }