zoukankan      html  css  js  c++  java
  • CodeForces 1166D Cute Sequences

    题目链接:http://codeforces.com/problemset/problem/1166/D

    题目大意

      给定序列的第一个元素 a 和最后一个元素 b 还有一个限制 m,请构造一个序列,序列的第 i 项 xi 满足 $x_i = sum_{i = 1}^{i - 1} + r_i,1 leq r_i leq m$。

    分析

      令 ri 分别全 1 和全 m,可以得到$2^{i - 2} * (a + 1) leq x_i leq 2^{i - 2} * (a + m), i geq 2$。
      因此,如果以 b 为第 k 个元素能够构成一个序列,那么 b 一定满足$2^{k - 2} * (a + 1) leq b leq 2^{k - 2} * (a + m), k geq 2$。
      反过来,如果存在 k 使 b 满足$2^{k - 2} * (a + 1) leq b leq 2^{k - 2} * (a + m), k geq 2$,那么是否一定能构成一个序列呢?其实是可以的,证明如下:

    $$
    egin{align*}
    &∵ x_i = (sum_{j = 1}^{j - 1} x_j) + r_i,1 leq r_i leq m,i geq 2 \
    &∵ sum_{j = 1}^{j - 1} x_j = 2 * x_{i - 1} - r_{i - 1} \
    &∴ x_i = 2 * x_{i - 1} + r_i - r_{i - 1} \
    &∵ x_2 = a + r_2 \
    &∴ x_i = 2^{i - 2} * a + 2^{i - 3} * r_2 + 2^{i - 4} * r_3 + dots + 2 * r_{i - 2} + r_{i - 1} + r_i \
    &∴ x_i = 2^{i - 2} * a + r_i + (sum_{j = 0}^{i - 3} 2^j * r_{i - j - 1}) \
    &设 h = r_k,d_i = r_k - h,1 - m leq d_i leq m - 1,1 leq h leq m \
    &∴ x_i = 2^{i - 2} * a + h + (sum_{j = 0}^{i - 3} 2^j * (d_{i - j - 1} + h)) \
    &∴ x_i = 2^{i - 2} * (a + h) + (sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) \
    &令 d_{i - j - 1} = 0 or 1,0 leq j leq i - 3 \
    &于是有(sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) < 2^{i - 2} \
    &∴ x_i = 2^{i - 2} * (a + h) + (sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) 满足 2^{i - 2} * (a + 1) leq x_i leq 2^{i - 2} * (a + m), i geq 2
    end{align*}
    $$

      至此我们找到了 $r_i$ 的一种赋值方案,使得 $2^{i - 2} * (a + 1) leq x_i leq 2^{i - 2} * (a + m), i geq 2$。

      应用到通项公式后我们发现: $x_{i - 1} = frac{x_i + r_{i - 1} - r_i}{2} = frac{x_i + p_i}{2},p_i in {-1, 0, 1}$。

      pi 的值视 xi 而定,且满足$2 | (x_i + p_i)$。

       那么序列 p 中把 0 除外后的序列必然是 -1,1,-1交错的,可以用反证法证明。

      如果 pi == pi+1 == 1,那么 ri-1 - ri+1 == 2,与 |rj - ri| == |dj - di| <= 1 矛盾。

      据此可以从尾部开始向前构造序列。  

    代码如下

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
      6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
      7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20  
     21 #define ms0(a) memset(a,0,sizeof(a))
     22 #define msI(a) memset(a,inf,sizeof(a))
     23 #define msM(a) memset(a,-1,sizeof(a))
     24 
     25 #define MP make_pair
     26 #define PB push_back
     27 #define ft first
     28 #define sd second
     29  
     30 template<typename T1, typename T2>
     31 istream &operator>>(istream &in, pair<T1, T2> &p) {
     32     in >> p.first >> p.second;
     33     return in;
     34 }
     35  
     36 template<typename T>
     37 istream &operator>>(istream &in, vector<T> &v) {
     38     for (auto &x: v)
     39         in >> x;
     40     return in;
     41 }
     42  
     43 template<typename T1, typename T2>
     44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     45     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     46     return out;
     47 }
     48 
     49 inline int gc(){
     50     static const int BUF = 1e7;
     51     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     52     
     53     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     54     return *bg++;
     55 } 
     56 
     57 inline int ri(){
     58     int x = 0, f = 1, c = gc();
     59     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     60     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     61     return x*f;
     62 }
     63  
     64 typedef long long LL;
     65 typedef unsigned long long uLL;
     66 typedef pair< double, double > PDD;
     67 typedef pair< int, int > PII;
     68 typedef pair< string, int > PSI;
     69 typedef set< int > SI;
     70 typedef vector< int > VI;
     71 typedef map< int, int > MII;
     72 typedef pair< LL, LL > PLL;
     73 typedef vector< LL > VL;
     74 typedef vector< VL > VVL;
     75 const double EPS = 1e-10;
     76 const LL inf = 0x7fffffff;
     77 const LL infLL = 0x7fffffffffffffffLL;
     78 const LL mod = 1e18 + 7;
     79 const int maxN = 2e5 + 7;
     80 const LL ONE = 1;
     81 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
     82 const LL oddBits = 0x5555555555555555;
     83 
     84 int q;
     85 LL a, b, m, k;
     86 LL x[57];
     87 
     88 int main(){
     89     INIT(); 
     90     cin >> q;
     91     while(q--) {
     92         cin >> a >> b >> m;
     93         LL p = 1;
     94         k = 2;
     95         // 找使得 b <= p * (a + m) 的最小 p 
     96         while(b > p * (a + m)) {
     97             ++k;
     98             p <<= 1;
     99         }
    100         // 在 a != b 的情况下,只要满足 p * (a + 1) <= b <= p * (a + m),就一定可以构造 
    101         if(b >= p * (a + 1)) {
    102             cout << k << " ";
    103             x[1] = a;
    104             x[k] = b;
    105             int p = 1;
    106             rFor(i, k - 1, 2) {
    107                 if(x[i + 1] % 2 == 0) x[i] = x[i + 1] >> 1;
    108                 else {
    109                     x[i] = (x[i + 1] + p) >> 1;
    110                     p = -p;
    111                 }
    112             }
    113             For(i, 1, k) cout << x[i] << " " << endl;
    114             cout << endl;
    115         }
    116         else if(a == b) cout << "1 " << a << endl;
    117         else cout << -1 << endl;
    118     }
    119     return 0;
    120 }
    View Code

    大佬代码如下

      和我的代码效果是一样的,但我死活推不出原理,只能先搁着里了。

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
      6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
      7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20  
     21 #define ms0(a) memset(a,0,sizeof(a))
     22 #define msI(a) memset(a,inf,sizeof(a))
     23 #define msM(a) memset(a,-1,sizeof(a))
     24 
     25 #define MP make_pair
     26 #define PB push_back
     27 #define ft first
     28 #define sd second
     29  
     30 template<typename T1, typename T2>
     31 istream &operator>>(istream &in, pair<T1, T2> &p) {
     32     in >> p.first >> p.second;
     33     return in;
     34 }
     35  
     36 template<typename T>
     37 istream &operator>>(istream &in, vector<T> &v) {
     38     for (auto &x: v)
     39         in >> x;
     40     return in;
     41 }
     42  
     43 template<typename T1, typename T2>
     44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     45     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     46     return out;
     47 }
     48 
     49 inline int gc(){
     50     static const int BUF = 1e7;
     51     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     52     
     53     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     54     return *bg++;
     55 } 
     56 
     57 inline int ri(){
     58     int x = 0, f = 1, c = gc();
     59     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     60     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     61     return x*f;
     62 }
     63  
     64 typedef long long LL;
     65 typedef unsigned long long uLL;
     66 typedef pair< double, double > PDD;
     67 typedef pair< int, int > PII;
     68 typedef pair< string, int > PSI;
     69 typedef set< int > SI;
     70 typedef vector< int > VI;
     71 typedef map< int, int > MII;
     72 typedef pair< LL, LL > PLL;
     73 typedef vector< LL > VL;
     74 typedef vector< VL > VVL;
     75 const double EPS = 1e-10;
     76 const LL inf = 0x7fffffff;
     77 const LL infLL = 0x7fffffffffffffffLL;
     78 const LL mod = 1e18 + 7;
     79 const int maxN = 2e5 + 7;
     80 const LL ONE = 1;
     81 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
     82 const LL oddBits = 0x5555555555555555;
     83 
     84 int q;
     85 LL a, b, m, k;
     86 
     87 int main(){
     88     INIT(); 
     89     cin >> q;
     90     while(q--) {
     91         cin >> a >> b >> m;
     92         LL p = 1;
     93         k = 2;
     94         // 找使得 b <= p * (a + m) 的最小 p 
     95         while(b > p * (a + m)) {
     96             ++k;
     97             p <<= 1;
     98         }
     99         // 在 a != b 的情况下,只要满足 p * (a + 1) <= b <= p * (a + m),就一定可以构造 
    100         if(b >= p * (a + 1)) {
    101             cout << k << " " << a << " ";
    102             For(i, 2, k - 1) cout << (((b >> (k - i - 1)) + 1) >> 1) << " ";
    103             cout << b << endl;
    104         }
    105         else if(a == b) cout << "1 " << a << endl;
    106         else cout << -1 << endl;
    107     }
    108     return 0;
    109 }
    View Code
  • 相关阅读:
    Android 5.0新特性了解(一)----TabLayout
    Kafka生产者各种启动参数说明
    Kafka基础知识
    ONS发布订阅消息
    Spring异步事件
    Java动态代理机制
    Java线程间怎么实现同步
    技术架构实践三要点
    Distributed transactions in Spring, with and without XA
    Spring 中常用注解原理剖析
  • 原文地址:https://www.cnblogs.com/zaq19970105/p/10897793.html
Copyright © 2011-2022 走看看