题目链接:https://atcoder.jp/contests/abc128/tasks/abc128_d
题目大意
有一个双端队列,里面有 N 个整数,你可以进行如下4种操作:
- A:从队头那一个到手里。
- B:从队尾拿一个到手里。
- C:把手中任意一个数放到队头(这个操作等价于扔掉,我们完全可以执行完全部的AB,在执行CD)。
- D:把手中任意一个数放到队尾。
先给定 K,要求操作数量不大于 K 次,求你手中所有数和能达到的最大值。
分析
区间DP,见注释。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (n); ++i) 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 21 #define ms0(a) memset(a,0,sizeof(a)) 22 #define msI(a) memset(a,inf,sizeof(a)) 23 #define msM(a) memset(a,-1,sizeof(a)) 24 25 #define MP make_pair 26 #define PB push_back 27 #define ft first 28 #define sd second 29 30 template<typename T1, typename T2> 31 istream &operator>>(istream &in, pair<T1, T2> &p) { 32 in >> p.first >> p.second; 33 return in; 34 } 35 36 template<typename T> 37 istream &operator>>(istream &in, vector<T> &v) { 38 for (auto &x: v) 39 in >> x; 40 return in; 41 } 42 43 template<typename T1, typename T2> 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 45 out << "[" << p.first << ", " << p.second << "]" << " "; 46 return out; 47 } 48 49 inline int gc(){ 50 static const int BUF = 1e7; 51 static char buf[BUF], *bg = buf + BUF, *ed = bg; 52 53 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 54 return *bg++; 55 } 56 57 inline int ri(){ 58 int x = 0, f = 1, c = gc(); 59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 61 return x*f; 62 } 63 64 typedef long long LL; 65 typedef unsigned long long uLL; 66 typedef pair< double, double > PDD; 67 typedef pair< int, int > PII; 68 typedef pair< string, int > PSI; 69 typedef set< int > SI; 70 typedef vector< int > VI; 71 typedef vector< PII > VPII; 72 typedef map< int, int > MII; 73 typedef pair< LL, LL > PLL; 74 typedef vector< LL > VL; 75 typedef vector< VL > VVL; 76 typedef priority_queue< int > PQIMax; 77 typedef priority_queue< int, VI, greater< int > > PQIMin; 78 const double EPS = 1e-10; 79 const LL inf = 0x7fffffff; 80 const LL infLL = 0x7fffffffffffffffLL; 81 const LL mod = 1e9 + 7; 82 const int maxN = 2e5 + 7; 83 const LL ONE = 1; 84 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 85 const LL oddBits = 0x5555555555555555; 86 87 88 int N, K, V[57]; 89 // dp[L][R][x][k]表示从在区间[L, R]中,在 x 边进行操作(1表示右边,0表示左边),进行 k 次操作所能取到的最大值 90 int dp[57][57][2][107]; 91 92 // 记忆化搜索过不了,不过留着吧,dp是从记忆化搜索改出来的 93 inline int dfs(int L, int R, int x, int k) { 94 if(L > R || k <= 0) return 0; 95 if(dp[L][R][x][k]) return dp[L][R][x][k]; 96 int ret = 0; 97 if(x == 0) {// 在左边操作 98 // 拿 99 ret = max(ret, V[L] + dfs(L + 1, R, 0, k - 1)); 100 ret = max(ret, V[L] + dfs(L + 1, R, 1, k - 1)); 101 if(V[L] < 0) { 102 // 扔掉(耗费两次操作) 103 ret = max(ret, dfs(L + 1, R, 0, k - 2)); 104 ret = max(ret, dfs(L + 1, R, 1, k - 2)); 105 } 106 } 107 else {// 在右边操作 108 // 拿 109 ret = max(ret, V[R] + dfs(L, R - 1, 0, k - 1)); 110 ret = max(ret, V[R] + dfs(L, R - 1, 1, k - 1)); 111 if(V[R] < 0) { 112 // 扔掉(耗费两次操作) 113 ret = max(ret, dfs(L, R - 1, 0, k - 2)); 114 ret = max(ret, dfs(L, R - 1, 1, k - 2)); 115 } 116 } 117 dp[L][R][x][k] = ret; 118 return ret; 119 } 120 121 int main(){ 122 INIT(); 123 cin >> N >> K; 124 For(i, 1, N) cin >> V[i]; 125 126 //cout << max(dfs(1, N, 0, K), dfs(1, N, 1, K)) << endl; 127 128 For(k, 1, K) { 129 For(L, 1, N) { 130 For(R, L, N) { 131 if(k != 1)dp[L][R][0][k] = max(dp[L + 1][R][0][k - 2], dp[L + 1][R][1][k - 2]); 132 dp[L][R][0][k] = max(dp[L][R][0][k], V[L] + dp[L + 1][R][0][k - 1]); 133 dp[L][R][0][k] = max(dp[L][R][0][k], V[L] + dp[L + 1][R][1][k - 1]); 134 135 if(k != 1)dp[L][R][1][k] = max(dp[L][R - 1][0][k - 2], dp[L][R - 1][1][k - 2]); 136 dp[L][R][1][k] = max(dp[L][R][1][k], V[R] + dp[L][R - 1][0][k - 1]); 137 dp[L][R][1][k] = max(dp[L][R][1][k], V[R] + dp[L][R - 1][1][k - 1]); 138 } 139 } 140 } 141 cout << max(dp[1][N][0][K], dp[1][N][1][K]) << endl; 142 return 0; 143 }