题目链接:https://atcoder.jp/contests/abc128/tasks/abc128_f
题目大意
给定长度为 N 的序列$s_0, s_1, dots, s_{N-1}$,现在要选取两个正整数 A 和 B,从$s_0$起跳,按照先往前跳 A 步,再往后跳 B 步的规则正好跳到$s_{N-1}$,每跳到一个地方,其所对应的元素值将会计入你的总分。有如下限制:
- 不能跳出序列。
- 同一个地方只能被跳到一次。
请选取适当的 A 和 B,使得得分最大。
分析
设跳 B 步这个行为进行了 k 次。
那么$s_{A-B}, s_{2*(A-B)}, dots, s_{k*(A-B)}$为每次跳 B 步后所能到达的点。
那么$s_{N-1 - (A-B)}, s_{N-1 - 2*(A-B)}, dots, s_{N-1 - k*(A-B)}$为每次跳 A 步后所能到达的点。
可以发现,以上两个序列是一一对应的,唯一变化的只有 A - B 和 k,并且跳 B 步这个行为进行了 k 次可从跳 B 步这个行为进行了 k - 1 次递推而来。
于是我们可以暴力枚举所有的 A - B 和 k,复杂度大概为$O(N*(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{N}))$,几乎是线性的。
代码如下

1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (n); ++i) 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 21 #define ms0(a) memset(a,0,sizeof(a)) 22 #define msI(a) memset(a,inf,sizeof(a)) 23 #define msM(a) memset(a,-1,sizeof(a)) 24 25 #define MP make_pair 26 #define PB push_back 27 #define ft first 28 #define sd second 29 30 template<typename T1, typename T2> 31 istream &operator>>(istream &in, pair<T1, T2> &p) { 32 in >> p.first >> p.second; 33 return in; 34 } 35 36 template<typename T> 37 istream &operator>>(istream &in, vector<T> &v) { 38 for (auto &x: v) 39 in >> x; 40 return in; 41 } 42 43 template<typename T1, typename T2> 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 45 out << "[" << p.first << ", " << p.second << "]" << " "; 46 return out; 47 } 48 49 inline int gc(){ 50 static const int BUF = 1e7; 51 static char buf[BUF], *bg = buf + BUF, *ed = bg; 52 53 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 54 return *bg++; 55 } 56 57 inline int ri(){ 58 int x = 0, f = 1, c = gc(); 59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 61 return x*f; 62 } 63 64 typedef long long LL; 65 typedef unsigned long long uLL; 66 typedef pair< double, double > PDD; 67 typedef pair< int, int > PII; 68 typedef pair< string, int > PSI; 69 typedef set< int > SI; 70 typedef vector< int > VI; 71 typedef vector< PII > VPII; 72 typedef map< int, int > MII; 73 typedef multimap< int, int > MMII; 74 typedef unordered_map< int, int > uMII; 75 typedef pair< LL, LL > PLL; 76 typedef vector< LL > VL; 77 typedef vector< VL > VVL; 78 typedef priority_queue< int > PQIMax; 79 typedef priority_queue< int, VI, greater< int > > PQIMin; 80 const double EPS = 1e-10; 81 const LL inf = 0x7fffffff; 82 const LL infLL = 0x7fffffffffffffffLL; 83 const LL mod = 1e9 + 7; 84 const int maxN = 1e5 + 7; 85 const LL ONE = 1; 86 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 87 const LL oddBits = 0x5555555555555555; 88 89 int N, s[maxN]; 90 LL ans; 91 92 int main(){ 93 INIT(); 94 cin >> N; 95 Rep(i, N) cin >> s[i]; 96 97 For(i, 1, N - 3) { // 枚举 A - B 98 LL ret = 0; 99 For(k, 1, (N - 1) / i) { 100 LL tmp = N - 1 - i * k; 101 if(tmp <= i || tmp % i == 0 && tmp / i <= k) break; 102 ret += s[i * k] + s[tmp]; 103 ans = max(ans, ret); 104 } 105 } 106 107 cout << ans << endl; 108 return 0; 109 }