zoukankan      html  css  js  c++  java
  • 2019 牛客多校第一场 E ABBA

    题目链接:https://ac.nowcoder.com/acm/contest/881/E

    题目大意

      问有多少个由 (n + m) 个 ‘A’ 和 (n + m) 个 ‘B’,组成的字符串能被分割成 (n + m) 个长度为 2 的子序列,其中恰好有 n 个 “AB”,和 m 个 “BA”。

    分析1(DP)

      首先,如果一个串是合法的,那么我们可以用贪心的思路找到一种必然正确的划分子序列的方法:前 n 个 A 分配给 AB,后 m 个 A 分配给 BA,B 同理。
      设 dp[i][j] 表示有 i 个 A 和 j 个 B 的合法前缀方案数。
      对于每一个前缀合法字符串,它下一个长度的前缀合法字符串有 2 种选择,在结尾加 A 或是加 B,为什么不在中间加?因为中间加的情况可以转化为另一个前缀合法字符串在结尾加字符,所以只要讨论在结尾加即可。
      接下来讨论一下不合法情况,由于是在结尾加,比如说加 A,在加之前,A 的数量不能超过 B 的数量加 n,不然的话会出现多余的 A。B 同理。
      最后就是状态转移方程了:
    1. dp[i][j] 由末尾加 A 得到,所以 dp[i][j] = dp[i][j] + dp[i - 1][j]。
    2. dp[i][j] 由末尾加 B 得到,所以 dp[i][j] = dp[i][j] + dp[i][j - 1]。
    3. dp[i][j] 不合法,为 0。

    代码如下

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
      6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
      7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
     21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // ?? x ?????? c 
     22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
     23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
     24  
     25 #define ms0(a) memset(a,0,sizeof(a))
     26 #define msI(a) memset(a,inf,sizeof(a))
     27 #define msM(a) memset(a,-1,sizeof(a))
     28 
     29 #define MP make_pair
     30 #define PB push_back
     31 #define ft first
     32 #define sd second
     33  
     34 template<typename T1, typename T2>
     35 istream &operator>>(istream &in, pair<T1, T2> &p) {
     36     in >> p.first >> p.second;
     37     return in;
     38 }
     39  
     40 template<typename T>
     41 istream &operator>>(istream &in, vector<T> &v) {
     42     for (auto &x: v)
     43         in >> x;
     44     return in;
     45 }
     46 
     47 template<typename T>
     48 ostream &operator<<(ostream &out, vector<T> &v) {
     49     Rep(i, v.size()) out << v[i] << " 
    "[i == v.size()];
     50     return out;
     51 }
     52 
     53 template<typename T1, typename T2>
     54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     55     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     56     return out;
     57 }
     58 
     59 inline int gc(){
     60     static const int BUF = 1e7;
     61     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     62     
     63     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     64     return *bg++;
     65 } 
     66 
     67 inline int ri(){
     68     int x = 0, f = 1, c = gc();
     69     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     70     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     71     return x*f;
     72 }
     73 
     74 template<class T>
     75 inline string toString(T x) {
     76     ostringstream sout;
     77     sout << x;
     78     return sout.str();
     79 }
     80 
     81 inline int toInt(string s) {
     82     int v;
     83     istringstream sin(s);
     84     sin >> v;
     85     return v;
     86 }
     87 
     88 //min <= aim <= max
     89 template<typename T>
     90 inline bool BETWEEN(const T aim, const T min, const T max) {
     91     return min <= aim && aim <= max;
     92 }
     93  
     94 typedef long long LL;
     95 typedef unsigned long long uLL;
     96 typedef pair< double, double > PDD;
     97 typedef pair< int, int > PII;
     98 typedef pair< int, PII > PIPII;
     99 typedef pair< string, int > PSI;
    100 typedef pair< int, PSI > PIPSI;
    101 typedef set< int > SI;
    102 typedef set< PII > SPII;
    103 typedef vector< int > VI;
    104 typedef vector< double > VD;
    105 typedef vector< VI > VVI;
    106 typedef vector< SI > VSI;
    107 typedef vector< PII > VPII;
    108 typedef map< int, int > MII;
    109 typedef map< int, string > MIS;
    110 typedef map< int, PII > MIPII;
    111 typedef map< PII, int > MPIII;
    112 typedef map< string, int > MSI;
    113 typedef map< string, string > MSS;
    114 typedef map< PII, string > MPIIS;
    115 typedef map< PII, PII > MPIIPII;
    116 typedef multimap< int, int > MMII;
    117 typedef multimap< string, int > MMSI;
    118 //typedef unordered_map< int, int > uMII;
    119 typedef pair< LL, LL > PLL;
    120 typedef vector< LL > VL;
    121 typedef vector< VL > VVL;
    122 typedef priority_queue< int > PQIMax;
    123 typedef priority_queue< int, VI, greater< int > > PQIMin;
    124 const double EPS = 1e-8;
    125 const LL inf = 0x7fffffff;
    126 const LL infLL = 0x7fffffffffffffffLL;
    127 const LL mod = 1e9 + 7;
    128 const int maxN = 2e3 + 7;
    129 const LL ONE = 1;
    130 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
    131 const LL oddBits = 0x5555555555555555;
    132 
    133 // dp[i][j] 表示有 i 个 A 和 j 个 B 的合法前缀方案数 
    134 int n, m, dp[maxN][maxN];
    135 
    136 int main(){
    137     //freopen("MyOutput.txt","w",stdout);
    138     //freopen("input.txt","r",stdin);
    139     //INIT();
    140     while(~scanf("%d%d", &n, &m)) {
    141         dp[0][0] = 1;
    142         Rep(i, n + m + 1) {
    143             Rep(j, n + m + 1) {
    144                 if(!i && !j) continue;
    145                 dp[i][j] = 0;
    146                 if (i > 0 && j >= i - n) dp[i][j] = (dp[i - 1][j] + dp[i][j]) % mod; // 在最后加 A 
    147                 if (j > 0 && i >= j - m) dp[i][j] = (dp[i][j - 1] + dp[i][j]) % mod; // 在最后加 B 
    148             }
    149         }
    150         
    151         printf("%d
    ", dp[n + m][n + m]);
    152     }
    153     return 0;
    154 }
    View Code

    分析2(卡特兰数的折线法)

      关于折线法:https://blog.csdn.net/qq_26525215/article/details/51453493

      一共有四种情况:

    1. m = 0 && n = 0:此时答案为 1。
    2. m > 0 && n = 0:此时退化成纯卡特兰数问题,答案为${{2m}choose{m}} - {{2m}choose{m - 1}}$。
    3. m = 0 && n > 0:此时退化成纯卡特兰数问题,答案为${{2n}choose{n}} - {{2n}choose{n - 1}}$。
    4. m > 0 && n > 0:这种是卡特兰数的变化,对应在折线图上就是从一条线变成了上下两条边界线,答案为${{2(n + m)}choose{n + m}} - {{2(n + m)}choose{m - 1}} - {{2(n + m)}choose{n - 1}}$。

    代码如下

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
      6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
      7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
     21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // ?? x ?????? c 
     22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
     23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
     24  
     25 #define ms0(a) memset(a,0,sizeof(a))
     26 #define msI(a) memset(a,inf,sizeof(a))
     27 #define msM(a) memset(a,-1,sizeof(a))
     28 
     29 #define MP make_pair
     30 #define PB push_back
     31 #define ft first
     32 #define sd second
     33  
     34 template<typename T1, typename T2>
     35 istream &operator>>(istream &in, pair<T1, T2> &p) {
     36     in >> p.first >> p.second;
     37     return in;
     38 }
     39  
     40 template<typename T>
     41 istream &operator>>(istream &in, vector<T> &v) {
     42     for (auto &x: v)
     43         in >> x;
     44     return in;
     45 }
     46 
     47 template<typename T>
     48 ostream &operator<<(ostream &out, vector<T> &v) {
     49     Rep(i, v.size()) out << v[i] << " 
    "[i == v.size()];
     50     return out;
     51 }
     52 
     53 template<typename T1, typename T2>
     54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     55     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     56     return out;
     57 }
     58 
     59 inline int gc(){
     60     static const int BUF = 1e7;
     61     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     62     
     63     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     64     return *bg++;
     65 } 
     66 
     67 inline int ri(){
     68     int x = 0, f = 1, c = gc();
     69     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     70     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     71     return x*f;
     72 }
     73 
     74 template<class T>
     75 inline string toString(T x) {
     76     ostringstream sout;
     77     sout << x;
     78     return sout.str();
     79 }
     80 
     81 inline int toInt(string s) {
     82     int v;
     83     istringstream sin(s);
     84     sin >> v;
     85     return v;
     86 }
     87 
     88 //min <= aim <= max
     89 template<typename T>
     90 inline bool BETWEEN(const T aim, const T min, const T max) {
     91     return min <= aim && aim <= max;
     92 }
     93  
     94 typedef long long LL;
     95 typedef unsigned long long uLL;
     96 typedef pair< double, double > PDD;
     97 typedef pair< int, int > PII;
     98 typedef pair< int, PII > PIPII;
     99 typedef pair< string, int > PSI;
    100 typedef pair< int, PSI > PIPSI;
    101 typedef set< int > SI;
    102 typedef set< PII > SPII;
    103 typedef vector< int > VI;
    104 typedef vector< double > VD;
    105 typedef vector< VI > VVI;
    106 typedef vector< SI > VSI;
    107 typedef vector< PII > VPII;
    108 typedef map< int, int > MII;
    109 typedef map< int, string > MIS;
    110 typedef map< int, PII > MIPII;
    111 typedef map< PII, int > MPIII;
    112 typedef map< string, int > MSI;
    113 typedef map< string, string > MSS;
    114 typedef map< PII, string > MPIIS;
    115 typedef map< PII, PII > MPIIPII;
    116 typedef multimap< int, int > MMII;
    117 typedef multimap< string, int > MMSI;
    118 //typedef unordered_map< int, int > uMII;
    119 typedef pair< LL, LL > PLL;
    120 typedef vector< LL > VL;
    121 typedef vector< VL > VVL;
    122 typedef priority_queue< int > PQIMax;
    123 typedef priority_queue< int, VI, greater< int > > PQIMin;
    124 const double EPS = 1e-8;
    125 const LL inf = 0x7fffffff;
    126 const LL infLL = 0x7fffffffffffffffLL;
    127 const LL mod = 1e9 + 7;
    128 const int maxN = 1e5 + 7;
    129 const LL ONE = 1;
    130 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
    131 const LL oddBits = 0x5555555555555555;
    132 
    133 LL fac[maxN];
    134 void init_fact() {
    135     fac[0] = 1;
    136     For(i, 1, maxN - 1) fac[i] = (i * fac[i - 1]) % mod;
    137 }
    138 
    139 //ax + by = gcd(a, b) = d
    140 // 扩展欧几里德算法
    141 inline void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
    142     if (!b) {d = a, x = 1, y = 0;}
    143     else{
    144         ex_gcd(b, a % b, y, x, d);
    145         y -= x * (a / b);
    146     }
    147 }
    148 
    149 // 求a关于p的逆元,如果不存在,返回-1 
    150 // a与p互质,逆元才存在 
    151 inline LL inv_mod(LL a, LL p = mod){
    152     LL d, x, y;
    153     ex_gcd(a, p, x, y, d);
    154     return d == 1 ? (x % p + p) % p : -1;
    155 }
    156 
    157 inline LL comb_mod(LL m, LL n) {
    158     LL ret;
    159 
    160     if(m > n) swap(m, n);
    161     
    162     ret = (fac[n] * inv_mod(fac[m], mod)) % mod;
    163     ret = (ret * inv_mod(fac[n - m], mod)) % mod;
    164     
    165     return ret;
    166 }
    167 
    168 LL n, m, ans;
    169 
    170 int main(){
    171     //freopen("MyOutput.txt","w",stdout);
    172     //freopen("input.txt","r",stdin);
    173     //INIT();
    174     init_fact();
    175     while(~scanf("%lld%lld", &n, &m)) {
    176         ans = comb_mod(n + m, 2 * (n + m));
    177         if(n) ans -= comb_mod(n - 1, 2 * (n + m));
    178         if(m) ans -= comb_mod(m - 1, 2 * (n + m));
    179         ans = (ans + 2 * mod) % mod;
    180         printf("%lld
    ", ans);
    181     }
    182     return 0;
    183 }
    View Code
  • 相关阅读:
    转载--详解tomcat配置
    MongoDB@入门一
    面试@单例模式
    单点登录系统(一)
    SublimeText3 初探(工欲善其事,必先利其器)
    UEFI+GPT 修复 win10启动
    悟空模式-java-建造者模式
    悟空模式-java-原型模式
    悟空模式-java-单例模式
    悟空模式-java-抽象工厂模式
  • 原文地址:https://www.cnblogs.com/zaq19970105/p/11237868.html
Copyright © 2011-2022 走看看