题目链接:https://vjudge.net/problem/POJ-2553
题目大意
给定有向图 G,对于 G 中一个点 v,如果 v 所能到达的点都能到达 v,那么称 v 为一个 sink 点,求 G 中所有的 sink 点。
分析
Tarjan 算法求出度为 0 的 SCC 的模板题。
代码如下
1 #include <cmath> 2 #include <ctime> 3 #include <iostream> 4 #include <string> 5 #include <vector> 6 #include <cstdio> 7 #include <cstdlib> 8 #include <cstring> 9 #include <queue> 10 #include <map> 11 #include <set> 12 #include <algorithm> 13 #include <cctype> 14 #include <stack> 15 #include <deque> 16 #include <list> 17 #include <sstream> 18 #include <cassert> 19 using namespace std; 20 21 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 22 #define Rep(i,n) for (int i = 0; i < (n); ++i) 23 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 24 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 25 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 26 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 27 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 28 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 29 30 #define pr(x) cout << #x << " = " << x << " " 31 #define prln(x) cout << #x << " = " << x << endl 32 33 #define LOWBIT(x) ((x)&(-x)) 34 35 #define ALL(x) x.begin(),x.end() 36 #define INS(x) inserter(x,x.begin()) 37 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end()) 38 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 39 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower); 40 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); 41 42 #define ms0(a) memset(a,0,sizeof(a)) 43 #define msI(a) memset(a,inf,sizeof(a)) 44 #define msM(a) memset(a,-1,sizeof(a)) 45 46 #define MP make_pair 47 #define PB push_back 48 #define ft first 49 #define sd second 50 51 template<typename T1, typename T2> 52 istream &operator>>(istream &in, pair<T1, T2> &p) { 53 in >> p.first >> p.second; 54 return in; 55 } 56 57 template<typename T> 58 istream &operator>>(istream &in, vector<T> &v) { 59 for (auto &x: v) 60 in >> x; 61 return in; 62 } 63 64 template<typename T1, typename T2> 65 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 66 out << "[" << p.first << ", " << p.second << "]" << " "; 67 return out; 68 } 69 70 inline int gc(){ 71 static const int BUF = 1e7; 72 static char buf[BUF], *bg = buf + BUF, *ed = bg; 73 74 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 75 return *bg++; 76 } 77 78 inline int ri(){ 79 int x = 0, f = 1, c = gc(); 80 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 81 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 82 return x*f; 83 } 84 85 template<class T> 86 inline string toString(T x) { 87 ostringstream sout; 88 sout << x; 89 return sout.str(); 90 } 91 92 inline int toInt(string s) { 93 int v; 94 istringstream sin(s); 95 sin >> v; 96 return v; 97 } 98 99 //min <= aim <= max 100 template<typename T> 101 inline bool BETWEEN(const T aim, const T min, const T max) { 102 return min <= aim && aim <= max; 103 } 104 105 typedef long long LL; 106 typedef unsigned long long uLL; 107 typedef pair< double, double > PDD; 108 typedef pair< int, int > PII; 109 typedef pair< int, PII > PIPII; 110 typedef pair< string, int > PSI; 111 typedef pair< int, PSI > PIPSI; 112 typedef set< int > SI; 113 typedef set< PII > SPII; 114 typedef vector< int > VI; 115 typedef vector< double > VD; 116 typedef vector< VI > VVI; 117 typedef vector< SI > VSI; 118 typedef vector< PII > VPII; 119 typedef map< int, int > MII; 120 typedef map< LL, int > MLLI; 121 typedef map< int, string > MIS; 122 typedef map< int, PII > MIPII; 123 typedef map< PII, int > MPIII; 124 typedef map< string, int > MSI; 125 typedef map< string, string > MSS; 126 typedef map< PII, string > MPIIS; 127 typedef map< PII, PII > MPIIPII; 128 typedef multimap< int, int > MMII; 129 typedef multimap< string, int > MMSI; 130 //typedef unordered_map< int, int > uMII; 131 typedef pair< LL, LL > PLL; 132 typedef vector< LL > VL; 133 typedef vector< VL > VVL; 134 typedef priority_queue< int > PQIMax; 135 typedef priority_queue< int, VI, greater< int > > PQIMin; 136 const double EPS = 1e-8; 137 const LL inf = 0x3fffffff; 138 const LL infLL = 0x3fffffffffffffffLL; 139 const LL mod = 20100713; 140 const int maxN = 5e3 + 7; 141 const LL ONE = 1; 142 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 143 const LL oddBits = 0x5555555555555555; 144 145 struct Edge{ 146 int from, to; 147 148 Edge() {} 149 Edge(int x, int y) : from(x), to(y) {} 150 }; 151 152 istream& operator>> (istream& in, Edge &x) { 153 in >> x.from >> x.to; 154 return in; 155 } 156 157 template<typename T> 158 ostream &operator<<(ostream &out, const vector<T> &v) { 159 Rep(i, v.size()) { 160 if(i) out << " "; 161 out << v[i]; 162 } 163 out << endl; 164 return out; 165 } 166 167 int N, M; 168 VI V[maxN], ans; 169 vector< Edge > E; 170 171 void addEdge(Edge &x) { 172 V[x.from].PB(E.size()); 173 E.PB(x); 174 } 175 176 stack< int > sk; // 递归处理 SCC (强连通分量) 177 bool insk[maxN]; // 是否在栈中 178 179 int scc[maxN], sccid; // 存每个点对应SCC的编号 180 int in[maxN], out[maxN]; // SCC的入度与出度 181 182 int Time; 183 int tp[maxN]; // timestamp,时间戳 184 int facr[maxN]; // The farthest ancestor that can be reached,每个节点最远的返回的祖先 185 // S :当前节点号 186 // 划分SCC并缩点 187 void Tarjan(int S) { 188 tp[S] = facr[S] = ++Time; 189 sk.push(S); 190 insk[S] = 1; 191 192 Rep(i, V[S].size()) { 193 Edge &e = E[V[S][i]]; 194 195 if(!tp[e.to]) { 196 Tarjan(e.to); 197 facr[S] = min(facr[S], facr[e.to]); 198 } 199 else if(insk[e.to]) facr[S] = min(facr[S], tp[e.to]); // 必须要保证在栈中,不然不能保证是一块SCC 200 } 201 202 if(facr[S] == tp[S]) { 203 ++sccid; 204 while(!sk.empty()) { 205 int tmp = sk.top(); sk.pop(); 206 207 insk[tmp] = 0; 208 scc[tmp] = sccid; 209 if(tmp == S) break; 210 } 211 } 212 } 213 214 void init() { 215 For(i, 1, N) V[i].clear(); 216 E.clear(); 217 ans.clear(); 218 219 while(!sk.empty()) sk.pop(); 220 ms0(insk); 221 222 ms0(scc); sccid = 0; 223 //ms0(in); 224 ms0(out); 225 226 Time = 0; 227 ms0(tp); 228 ms0(facr); 229 } 230 231 int main(){ 232 //freopen("MyOutput.txt","w",stdout); 233 //freopen("input.txt","r",stdin); 234 INIT(); 235 while(cin >> N && N) { 236 init(); 237 cin >> M; 238 For(i, 1, M) { 239 Edge t; 240 cin >> t; 241 addEdge(t); 242 } 243 244 For(i, 1, N) if(!tp[i]) Tarjan(i); 245 246 For(i, 1, N) { 247 Rep(j, V[i].size()) { 248 Edge &e = E[V[i][j]]; 249 if(scc[e.from] != scc[e.to]) ++out[scc[e.from]]; 250 } 251 } 252 253 For(i, 1, N) if(!out[scc[i]]) ans.PB(i); 254 255 sort(ALL(ans)); 256 cout << ans; 257 } 258 return 0; 259 }