zoukankan      html  css  js  c++  java
  • 一,专著研读(第三章-数据预处理)

    一,专著研读(第三章-数据预处理)

    • 数据预处理的主要任务
      主要步骤:数据清理---数据集成---数据规约---数据变换
    • 数据清理
      缺失值处理(忽略元组,人工填充,全局常量填充,中心值填充,同一类中值填充,概率最大的值填充)
      噪声和离群点
      噪声(分箱法,回归方法平滑数据)
      离群点分析(通过聚类检测离群点,剔除离群点)
    • 数据集成
      合并来自多个存储的数据,解决冗余和不一致问题等等。
      卡方检验
      统计样本的实际观测值预理论推断值之间的偏离程度。偏离程度决定卡方值的大小,值越大越不符合,值越小,偏差越小,趋于符合,为零完全符合
      标称数据的卡方检验
      数值数据的相关系数和协方差
      (X^{2}=sum_{i=1}^{I}sum_{j=1}^{J}frac{left ( O_{ij}-E_{ij} ight )^{2}}{E_{ij}})
      对于数值数据,计算属性A,B相关系数,估计这两个属性的相关度rA,B,两个属性的相关度在-1和1之间,rA,B大于零则A,B是正相关的。pearson系数是用协方差的值/标准差的乘积
      (r_{A,B}=frac{sum_{i=1}^{n}left ( a_{i-ar{A}} ight )left ( b_{i-ar{B}}   ight )}{nsigma _{A}sigma _{B}}=frac{sum_{i=1}^{n}left ( a_{i}b_{i} ight )-nar{A}ar{B}}{nsigma _{A}sigma _{B}})
      数值数据的协方差
      (Covleft ( A,B ight )=Eleft ( left ( A-ar{A} ight )left ( B-ar{B} ight ) ight )=frac{sum_{i=1}^{n}left ( a_{i}-ar{A} ight )left ( b_{i}-ar{B} ight )}{n})
    • 数据规约
      主要目的是得到数据的简化版,仍能起到同样的作用。方法有三种:维规约,数量规约,数据压缩。
      PCA
      用协方差矩阵计算特征向量降低维度,假设原始数据为M元素N特征(MXN),则特征矩阵为(NXK),计算出(MXK)
      过程
      将数据标准化,数据排列成N行M列的矩阵A,求A的协方差矩阵C;
      求C的特征值和特征向量,即主成分;
      排列主成分(由大到小),选择前K行组成特征矩阵P(KXN);
      结果矩阵B=PA,B(KXM);
      第一个新坐标轴的选择是原始数据中方差最大的方向,第二个新坐标轴的选择是与第一个新坐标轴正交且方差次大的方向,重复此过程(坐标轴正交,重复原始数据的所有特征维数)。
      如何得到包含最大差异性的主成分方向:
      计算数据矩阵的协方差矩阵的特征值及特征向量,选择特征值最大(包含方差最大)的N个特征所对应的特征向量组成的矩阵。


    DWT(小波变换)

    将向量X变换成不同的数值小波系数向量X`,是一种很好的有损压缩,和傅里叶变换(DFT)有关系,比傅里叶提供与原始数据更接近的近似数据。有待进一步学习理解。

  • 相关阅读:
    Jasmine入门
    最近面试js部分试题总结
    最近面试前端面试题整理(css部分)
    开发自己的类库
    关于FEer发展方向的思考
    工作那些事(八)工作的目标——《360周鸿祎在新员工入职培训上的讲话》读后感
    工作那些事(七)选择与被选择
    工作那些事(六)谈谈好的编程习惯的好处
    工作那些事(五)谈谈项目资料整理和积累
    工作那些事(四)大公司VS小公司
  • 原文地址:https://www.cnblogs.com/zaw-315/p/11219319.html
Copyright © 2011-2022 走看看