zoukankan      html  css  js  c++  java
  • Npc50F [生成函数+NTT]

    Npc50FNpc50F

    题目描述见标题链接 .


    color{red}{正解部分}

    对比赛 ii 构造生成函数: 2bi1+Cai1x1+Cai2x2+...+Caiaixai2^{b_i}-1+C_{a_i}^1x^1+C_{a_i}^2x^2+...+C_{a_i}^{a_i}x^{a_i} ,
    然后将每场比赛的生成函数使用 NTTNTT 启发式合并, 得到多项式 ff ,
    最后的 AnsjAns_j 即为 多项式ff(i=1jai)(sum_{i=1}^ja_i) 次项系数 .


    color{red}{实现部分}

    • 注意多项式乘数组要清空 !
    • 不能暴力合并多项式 !
    #include<bits/stdc++.h>
    #define reg register
    #define pb push_back
    
    int read(){
            char c;
            int s = 0, flag = 1;
            while((c=getchar()) && !isdigit(c))
                    if(c == '-'){ flag = -1, c = getchar(); break ; }
            while(isdigit(c)) s = s*10 + c-'0', c = getchar();
            return s * flag;
    }
    
    const int maxn = 4e6 + 5;
    const int mod = 998244353;
    
    int N;
    int bit_cnt;
    int NTT_len;
    int C[maxn];
    int fac[maxn];
    int rev[maxn];
    int Fmp_1[maxn];
    int Fmp_2[maxn];
    
    std::vector <int> P[maxn];
    
    struct Node{ int a, b; } A[maxn];
    
    int Ksm(int a, int b){
            if(!a) return 1;
            int s = 1; a %= mod;
            while(b){ if(b&1)s=1ll*s*a%mod; a=1ll*a*a%mod; b>>=1; }
            return s;
    }
    
    void NTT(int *f, int opt){
            for(reg int i = 0; i < NTT_len; i ++) if(i < rev[i]) std::swap(f[i], f[rev[i]]);
            for(reg int p = 2; p <= NTT_len; p <<= 1){
                    int half = p >> 1;
                    int wn = Ksm(3, (mod-1)/p);
                    if(opt == -1) wn = Ksm(wn, mod-2);
                    for(reg int i = 0; i < NTT_len; i += p){
                            int buf = 1;
                            for(reg int k = i; k < i+half; k ++){
                                    int Tmp_1 = 1ll*buf*f[k+half] % mod;
                                    f[k+half] = (f[k] - Tmp_1 + mod) % mod;
                                    f[k] = (f[k] + Tmp_1) % mod;
                                    buf = 1ll*buf*wn % mod;
                            }
                    }
            }
    }
    
    void Merge_poly(){
            int tot = N; 
    
    while(tot > 1){
            int cnt = 0;
            for(reg int t = 1; t <= tot/2; t ++){
                    for(reg int i = 0; i < P[t*2-1].size(); i ++) Fmp_1[i] = P[t*2-1][i];
                    for(reg int i = 0; i < P[t<<1].size(); i ++) Fmp_2[i] = P[t<<1][i];
                    NTT_len = 1, bit_cnt = 0;
                    while(NTT_len <= (P[t*2-1].size()+P[t<<1].size())) NTT_len <<= 1, bit_cnt ++; 
                    for(reg int i = P[t*2-1].size(); i <= NTT_len; i ++) Fmp_1[i] = 0;
                    for(reg int i = P[t<<1].size(); i <= NTT_len; i ++) Fmp_2[i] = 0;
                    for(reg int i = 0; i < NTT_len; i ++) rev[i] = (rev[i>>1]>>1)|((i&1)<<bit_cnt-1);
                    NTT(Fmp_1, 1), NTT(Fmp_2, 1);
                    for(reg int i = 0; i < NTT_len; i ++) Fmp_1[i] = 1ll*Fmp_1[i]*Fmp_2[i] % mod;
                    NTT(Fmp_1, -1);
                    int Tmp_len = P[t<<1].size()-1+P[t*2-1].size()-1, Inv = Ksm(NTT_len, mod-2);
                    for(reg int i = 0; i < NTT_len; i ++) Fmp_1[i] = 1ll*Fmp_1[i]*Inv%mod;
                    P[++ cnt].clear();
                    for(reg int i = 0; i <= Tmp_len; i ++) P[cnt].pb(Fmp_1[i]);
            }
            if(tot & 1){
                    P[++ cnt].clear();
                    for(reg int i = 0; i < P[tot].size(); i ++) P[cnt].pb(P[tot][i]);
            }
            tot = cnt;
    }                  
    
    }
    
    void Init(){ fac[0] = 1; for(reg int i = 1; i < maxn; i ++) fac[i] = 1ll*fac[i-1]*i % mod; }
    
    int ZhC(int n, int m){ return 1ll*fac[n]*Ksm(fac[n-m], mod-2)%mod*Ksm(fac[m], mod-2)%mod; }
    
    bool cmp(Node x, Node y){ return x.a < y.a; }
    
    int main(){
            Init();
            N = read();
            for(reg int i = 1; i <= N; i ++) A[i].a = read();
            for(reg int i = 1; i <= N; i ++) A[i].b = read();
            std::sort(A+1, A+N+1, cmp);
            for(reg int i = 1; i <= N; i ++){
                    P[i].pb(Ksm(2, A[i].b) - 1);
                    for(reg int j = 1; j <= A[i].a; j ++) P[i].pb(ZhC(A[i].a, j));
            }
            Merge_poly();
            int sum_a = 0;
            for(reg int i = 0; i <= N; i ++) sum_a += A[i].a;
            for(reg int i = 0; i <= sum_a; i ++) printf("%d ", P[1][i]);
            return 0;
    }
    
  • 相关阅读:
    3.16 使用Zookeeper对HDFS HA配置自动故障转移及测试
    4、html的body内标签之input系列
    Gym
    Gym
    Gym
    Gym
    Gym
    Big Event in HDU HDU1171 (多重背包)
    Coins POJ 1742 多重背包部分和
    HDU 1059 Dividing 多重背包
  • 原文地址:https://www.cnblogs.com/zbr162/p/11822511.html
Copyright © 2011-2022 走看看