3191: [JLOI2013]卡牌游戏
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 451 Solved: 308
[Submit][Status][Discuss]
Description
N个人坐成一圈玩游戏。一开始我们把所有玩家按顺时针从1到N编号。首先第一回合是玩家1作为庄家。每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把卡片上的数字向所有玩家展示,然后按顺时针从庄家位置数第X个人将被处决即退出游戏。然后卡片将会被放回卡牌堆里并重新洗牌。被处决的人按顺时针的下一个人将会作为下一轮的庄家。那么经过N-1轮后最后只会剩下一个人,即为本次游戏的胜者。现在你预先知道了总共有M张卡片,也知道每张卡片上的数字。现在你需要确定每个玩家胜出的概率。
这里有一个简单的例子:
例如一共有4个玩家,有四张卡片分别写着3,4,5,6.
第一回合,庄家是玩家1,假设他选择了一张写着数字5的卡片。那么按顺时针数1,2,3,4,1,最后玩家1被踢出游戏。
第二回合,庄家就是玩家1的下一个人,即玩家2.假设玩家2这次选择了一张数字6,那么2,3,4,2,3,4,玩家4被踢出游戏。
第三回合,玩家2再一次成为庄家。如果这一次玩家2再次选了6,则玩家3被踢出游戏,最后的胜者就是玩家2.
Input
第一行包括两个整数N,M分别表示玩家个数和卡牌总数。
接下来一行是包含M个整数,分别给出每张卡片上写的数字。
Output
输出一行包含N个百分比形式给出的实数,四舍五入到两位小数。分别给出从玩家1到玩家N的胜出概率,每个概率之间用空格隔开,最后不要有空格。
Sample Input
5 5
2 3 5 7 11
2 3 5 7 11
Sample Output
22.72% 17.12% 15.36% 25.44% 19.36%
输入样例2:
4 4
3 4 5 6
输入样例2:
4 4
3 4 5 6
HINT
对于100%的数据,有1<=N<=50 1<=M<=50 1<=每张卡片上的数字<=50
分析:对于一个点i,赢得概率i原本累加的概率+j的概率除以卡牌总数,如果从j用卡片k正好到i,因为概率p等于取到p的可能/所有的可能.这样描述确实太抽象了.可以发现这道题是约瑟夫环的变形:
约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。通常解决这类问题时我们把编号从0~n-1,最后[1] 结果+1即为原问题的解。 ----摘自百度百科
对于本题的数据而言,搜索是不大可能,那么就dp,可以发现结果和进行游戏的人数、谁坐庄(赢者)和选取的卡牌有关,而选取的卡牌我们可以通过枚举得到,所以状态就可以用二维表示,即f[i][j]表示有i个人在进行游戏,赢得人是j的概率.那么很明显f[i][j] = f[i][j] + f[i - 1][i - temp + j] / m;temp为在i个人进行游戏的情况下走的步数(mod i),当然这是在temp > j的情况下,如果temp < j呢?f[i][j] = f[i][j] + f[i - 1][j - temp] / m;一一枚举即可.
#include <cstdio> #include <cmath> #include <iostream> #include <cstring> #include <algorithm> using namespace std; const int maxn = 55; int n, m,a[maxn]; double f[maxn][maxn]; int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= m; i++) scanf("%d", &a[i]); memset(f, 0, sizeof(f)); f[1][1] = 1.0; for (int i = 2; i <= n; i++) for (int j = 1; j <= n; j++) for (int k = 1; k <= m; k++) { int temp = a[k] % i; if (temp == 0) temp = i; if (temp > j) f[i][j] = f[i][j] + f[i - 1][i - temp + j] / m; if (temp < j) f[i][j] = f[i][j] + f[i - 1][j - temp] / m; } for (int i = 1; i <= n; i++) { printf("%.2lf%%", f[n][i] * 100); //为了输出后面的% if (i != n) printf(" "); } return 0; }