zoukankan      html  css  js  c++  java
  • 清北学堂模拟赛d3t3 c

    分析:一开始拿到这道题真的是无从下手,暴力都很难打出来.但是基本的方向还是要有的,题目问的是方案数,dp不行就考虑数学方法.接下来比较难想.其实对于每一行或者每一列,我们任意打乱顺序其实对答案是没有影响的.那么我们按照高度从大到小对行和列进行排序,单独考虑所有高度相等的行和列,组成了一个L形,如果我们把所有的L形的方案数求出来最后乘起来就是答案了,关键就是怎么求它的方案数.

         要求L形中满足每行每列最大高度不超过H的方案数很难求,因为不好保证最大高度,正难则反,先求出不满足的,但是不满足的也比较难求,我们就先求出有一行不满足的,一列不满足的,然后求出两行不满足的,两列不满足的,这其实就是一个容斥原理,处于限制的行和列由于取的数小于H,所以每一位能取H个数,而没有限制的可以取0~H,共H+1个数,那么方案数就出来了:H^(限制的面积) + (H+1)^(没有限制的面积)* (-1)^|S|,就像下面一个图:

     蓝色部分没有限制,黑色部分有限制,黑色部分和蓝色部分组成了一个L形.

    正难则反,如果求满足某某条件很难,就求出不满足某某条件的,如果还是很难,就分解一下,利用容斥原理来做.

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const int mod = 1e9 + 9;
    long long n, m,a[10010],b[10010],x,y;
    long long ans = 1,c[100][100];
    
    void init()
    {
        c[0][0] = 1;
        for (int i = 1; i <= 90; i++)
        {
            c[i][0] = 1;
            for (int j = 1; j <= 90; j++)
                c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
        }
    }
    
    long long qpow(long long a, long long b)
    {
        long long res = 1;
        while (b)
        {
            if (b & 1)
                res = (res * a) % mod;
            b >>= 1;
            a = (a * a) % mod;
        }
        return res;
    }
    
    long long cal(long long x, long long y, long long nx, long long ny, int p)
    {
        long long res = 0;
        for (long long i = 0; i <= nx; i++)
            for (long long j = 0; j <= ny; j++)
            {
            long long temp = qpow(p, x * y - (x - i) * (y - j)) * qpow(p + 1, (x - i) * (y - j) - (x - nx) * (y - ny)) % mod * c[nx][i] % mod * c[ny][j] % mod;
            if ((i + j) & 1)
                res = ((res - temp) % mod + mod) % mod;
            else
            {
                res += temp;
                while (res >= mod)
                    res -= mod;
            }
            }
        return res;
    }
    
    int main()
    {
        scanf("%lld%lld", &n, &m);
        for (int i = 1; i <= n; i++)
        {
            long long x;
            scanf("%lld", &x);
            a[x]++;
        }
        for (int i = 1; i <= m; i++)
        {
            long long x;
            scanf("%lld", &x);
            b[x]++;
        }
        init();
        for (int i = 10000; i >= 0; i--)
            if (a[i] || b[i])
            {
            x += a[i];
            y += b[i];
            ans = ans * cal(x, y, a[i], b[i],i) % mod;
            }
        printf("%lld
    ", ans);
    
        return 0;
    }
  • 相关阅读:
    ThinkPHP中的CURD操作
    安卓自写Adapter
    安卓 报错 Check the Eclipse log for stack trace.
    web开发 关于src跳转
    javascript入门学习笔记2
    javascript入门学习笔记
    最全java的读写操作(转载)
    http请求的cookie
    java 安卓开发之文件的读与写
    转 安卓控件属性大全
  • 原文地址:https://www.cnblogs.com/zbtrs/p/7627954.html
Copyright © 2011-2022 走看看