分析:这道题一个一个枚举都能有70分......
前60分可以用中国剩余定理搞一搞.然而并没有枚举分数高......考虑怎么省去不必要的枚举,每次跳都只跳a的倍数,这样对前面的式子没有影响,为了使得这个倍数最小从而不会WA掉,每次跳最小公倍数就可以了.
60分代码:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; ll mod[5], a[5], ans, M = 1; void exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return; } exgcd(b, a % b, x, y); ll t = x; x = y; y = t - (a / b) * y; return; } int main() { scanf("%lld%lld%lld%lld%lld%lld%lld%lld", &mod[1], &a[1], &mod[2], &a[2], &mod[3], &a[3], &mod[4], &a[4]); for (int i = 1; i <= 4; i++) M *= mod[i]; for (int i = 1; i <= 4; i++) { ll mi = M / mod[i]; ll x, y; exgcd(mi, mod[i], x, y); ans = (ans + a[i] * mi * x) % M; } if (ans < 0) ans += M; printf("%lld ", ans); return 0; }
100分代码:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; ll mod[5], a[5], gcd, lcm, ans; ll GCD(ll x, ll y) { if (!y) return x; return GCD(y, x % y); } int main() { scanf("%lld%lld%lld%lld%lld%lld%lld%lld", &mod[1], &a[1], &mod[2], &a[2], &mod[3], &a[3], &mod[4], &a[4]); lcm = mod[1]; gcd = mod[1]; ans = a[1]; for (int i = 2; i <= 4; i++) { while (ans % mod[i] != a[i]) ans += lcm; gcd = GCD(gcd, mod[i]); lcm = lcm / gcd * mod[i]; } printf("%lld ", ans); return 0; }