zoukankan      html  css  js  c++  java
  • poj2186 Popular Cows

    Popular Cows
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 36087   Accepted: 14710

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.

    Input

    * Line 1: Two space-separated integers, N and M

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow.

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1
    

    Hint

    Cow 3 is the only cow of high popularity.

    Source

    分析:先缩点,如果最后只有一个强联通分量满足出度为0,那么答案就是这个强联通分量的点的数量,否则为0.一个强连通分量要被其他所有的强连通分量指向,那么这个强连通分量肯定不能有出边,否则一定会形成一个更大的强连通分量.有且只有一个,因为满足条件的强连通分量要被剩下的强连通分量所指,如果有两个没有出边,答案自然为0.
    没有1A,因为没有考虑到强连通分量中点的数目......直接输出了1
    #include <cstdio>
    #include <stack>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 50010;
    
    int n,m,head[maxn],to[maxn],nextt[maxn],tot = 1,pre[maxn],low[maxn],scc[maxn],cnt,du[maxn],dfs_clock;
    int ans,numm,num[maxn];
    stack <int> s;
    
    void add(int x,int y)
    {
        to[tot] = y;
        nextt[tot] = head[x];
        head[x] = tot++;
    }
    
    void tarjan(int u)
    {
        s.push(u);
        pre[u] = low[u] = ++dfs_clock;
        for (int i = head[u];i;i = nextt[i])
        {
            int v = to[i];
            if (!pre[v])
            {
                tarjan(v);
                low[u] = min(low[u],low[v]);
            }
            else
                if (!scc[v])
                    low[u] = min(low[u],pre[v]);
        }
        if (pre[u] == low[u])
        {
            cnt++;
            while(1)
            {
                int t = s.top();
                s.pop();
                scc[t] = cnt;
                num[cnt]++;
                if(t == u)
                    break;
            }
        }
    }
    
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i = 1; i <= m; i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            add(a,b);
        }
        for (int i = 1; i <= n; i++)
            if (!pre[i])
                tarjan(i);
        for (int i = 1; i <= n; i++)
        {
            for(int j = head[i];j;j = nextt[j])
            {
                int v = to[j];
                if (scc[i] != scc[v])
                    du[scc[i]]++;
            }
        }
        for (int i = 1; i <= cnt; i++)
            if (!du[i])
            {
                numm++;
                ans = num[i];
            }
        if (numm == 1)
        printf("%d
    ",ans);
        else
            printf("0
    ");
    
        return 0;
    }
  • 相关阅读:
    【整理】Web页面防止重复提交
    C#域验证的代码
    【整理】delegate+RemotingServices 委托+远程调用的一个实例
    【转载】框架里跨域Session丢失问题
    转贴:谈谈多线程的思维方式
    list,vector,deque有什么区别
    转贴:.NET多线程编程(3):线程同步
    转贴:.NET多线程编程(1):多任务和多线程
    转贴:.NET多线程编程(2):System.Threading.Thread类
    转贴:.NET多线程编程(4):线程池和异步编程
  • 原文地址:https://www.cnblogs.com/zbtrs/p/8042849.html
Copyright © 2011-2022 走看看