zoukankan      html  css  js  c++  java
  • poj3421 X-factor Chains

    X-factor Chains
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7733   Accepted: 2447

    Description

    Given a positive integer X, an X-factor chain of length m is a sequence of integers,

    1 = X0, X1, X2, …, Xm = X

    satisfying

    Xi < Xi+1 and Xi | Xi+1 where a | b means a perfectly divides into b.

    Now we are interested in the maximum length of X-factor chains and the number of chains of such length.

    Input

    The input consists of several test cases. Each contains a positive integer X (X ≤ 220).

    Output

    For each test case, output the maximum length and the number of such X-factors chains.

    Sample Input

    2
    3
    4
    10
    100

    Sample Output

    1 1
    1 1
    2 1
    2 2
    4 6

    Source

    大致题意:构造一个序列,使得ai整除ai+1,a0 = 1,an = x,现在给定x,求这样的序列最长的长度是多少?有多少个?
    分析:将x分解质因数.从第i个数变成第i-1个数就是去掉一个质因子,那么把x的质因子的次数加上,这就是第一问的答案.第二问实际上就是要求排列数,相同的数在不同的位置只能算一次.那么利用可重复的排列数公式计算即可.
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    ll n,ans,jie[30],sum,yinzi[30],tot,mul;
    
    int main()
    {
        jie[0] = 1;
        for (int i = 1; i <= 20; i++)
            jie[i] = jie[i - 1] * i;
        while (scanf("%lld",&n) != EOF)
        {
            tot = ans = sum = 0;
            mul = 1;
            memset(yinzi,0,sizeof(yinzi));
            for (ll i = 2; i * i <= n; i++)
            {
                if (n % i == 0)
                {
                    ++tot;
                    while (n % i == 0)
                    {
                        n /= i;
                        yinzi[tot]++;
                        sum++;
                    }
                }
            }
            if (n > 1)
            {
                ++tot;
                ++sum;
                yinzi[tot]++;
            }
            printf("%lld ",sum);
            ans = jie[sum];
            for (int i = 1; i <= tot; i++)
                mul *= jie[yinzi[i]];
            ans /= mul;
            printf("%lld
    ",ans);
        }
    
        return 0;
    }
  • 相关阅读:
    Oracle Flashback Table
    新上线MySQL数据库规划
    Spark启动流程(Standalone)- master源码
    Spark启动流程(Standalone)-分析
    Spark Netty 通信框架解析
    Spark内核概述
    SparkStreaming DStream转换
    Spark-Core RDD依赖关系
    Spark-Core RDD中函数(变量)传递
    Spark-Core RDD行动算子
  • 原文地址:https://www.cnblogs.com/zbtrs/p/8073343.html
Copyright © 2011-2022 走看看