zoukankan      html  css  js  c++  java
  • poj2987 Firing

    Firing
    Time Limit: 5000MS   Memory Limit: 131072K
    Total Submissions: 11132   Accepted: 3372

    Description

    You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do some firings. You’re now simply too mad to give response to questions like “Don’t you think it is an even more stupid decision to have signed them?”, yet calm enough to consider the potential profit and loss from firing a good portion of them. While getting rid of an employee will save your wage and bonus expenditure on him, termination of a contract before expiration costs you funds for compensation. If you fire an employee, you also fire all his underlings and the underlings of his underlings and those underlings’ underlings’ underlings… An employee may serve in several departments and his (direct or indirect) underlings in one department may be his boss in another department. Is your firing plan ready now?

    Input

    The input starts with two integers n (0 < n ≤ 5000) and m (0 ≤ m ≤ 60000) on the same line. Next follows n + m lines. The first n lines of these give the net profit/loss from firing the i-th employee individually bi (|bi| ≤ 107, 1 ≤ i ≤ n). The remaining m lines each contain two integers i and j (1 ≤ ij ≤ n) meaning the i-th employee has the j-th employee as his direct underling.

    Output

    Output two integers separated by a single space: the minimum number of employees to fire to achieve the maximum profit, and the maximum profit.

    Sample Input

    5 5
    8
    -9
    -20
    12
    -10
    1 2
    2 5
    1 4
    3 4
    4 5

    Sample Output

    2 2

    Hint

    As of the situation described by the sample input, firing employees 4 and 5 will produce a net profit of 2, which is maximum.

    Source

    题目大意:每个点的点权有正有负,删掉一个点需要删掉它的所有后继节点以及后继节点的后继节点直到无点可删.求最大收益时删的点数.
    分析:最大权闭合图.
              固定的建图方法:1.保留原图中的所有边,边权为inf. 2.对于点权为正的点,从源点S向它连一条容量为其点权的边.  3.对于点权为负的点,从它向汇点T连一条容量为它的点权的绝对值的边.  4.点权为正的点的点权和 - 最大流即为答案.
              至于会删掉多少个点,最大权闭合图的所有点都会被删掉,那么dfs求一下还有多少个点在残余网络上就可以了.
    #include <cstdio>
    #include <queue>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    const ll maxn = 100010,inf = 0x7fffffff;
    
    ll n,f,d,S,T,head[maxn],to[maxn],nextt[maxn],tot = 2,w[maxn],ans,m,c[maxn],sum,flag[maxn];
    ll vis[maxn],ans2;
    
    void add(ll x,ll y,ll z)
    {
        w[tot] = z;
        to[tot] = y;
        nextt[tot] = head[x];
        head[x] = tot++;
    
        w[tot] = 0;
        to[tot] = x;
        nextt[tot] = head[y];
        head[y] = tot++;
    }
    
    bool bfs()
    {
        queue <ll> q;
        memset(vis,-1,sizeof(vis));
        vis[S] = 0;
        q.push(S);
        while (!q.empty())
        {
            ll u = q.front();
            q.pop();
            if (u == T)
                return true;
            for (int i = head[u];i;i = nextt[i])
            {
                ll v = to[i];
                if (vis[v] == -1 && w[i])
                {
                    vis[v] = vis[u] + 1;
                    q.push(v);
                }
            }
        }
        return false;
    }
    
    ll dfs(ll u,ll f)
    {
        ll res = 0;
        if (u == T)
            return f;
        for (int i = head[u];i;i = nextt[i])
        {
            ll v = to[i];
            if (w[i] && vis[v] == vis[u] + 1)
            {
                ll temp = dfs(v,min(f - res,w[i]));
                res += temp;
                w[i] -= temp;
                w[i ^ 1] += temp;
                if (res == f)
                    return res;
            }
        }
        if (!res)
            vis[u] = -1;
        return res;
    }
    
    void dfs2(ll u)
    {
        flag[u] = 1;
        ans2++;
        for (int i = head[u];i;i = nextt[i])
        {
            ll v = to[i];
            if (w[i] && !flag[v])
            {
                flag[v] = 1;
                dfs2(v);
            }
        }
    }
    
    void dinic()
    {
        while (bfs())
           ans += dfs(S,inf);
    }
    
    int main()
    {
        scanf("%lld%lld",&n,&m);
        S = 0;
        T = n + 1;
        for (int i = 1; i <= n; i++)
        {
            scanf("%lld",&c[i]);
            if (c[i] > 0)
            {
                sum += c[i];
                add(S,i,c[i]);
            }
            if (c[i] < 0)
                add(i,T,-c[i]);
        }
        for (int i = 1; i <= m; i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            add(a,b,inf);
        }
        dinic();
        dfs2(S);
        printf("%lld %lld
    ",ans2 - 1,sum - ans);
    
        return 0;
    }
  • 相关阅读:
    Sphinx安装流程及配合PHP使用经验
    使用HTML5视频事件示例
    Centos6.5下编译安装mysql 5.6
    AES加密
    ab参数详解 – 压力测试
    vim 常用快捷键
    telnet操作memcache
    如何在Webstorm/Phpstorm中设置连接FTP,并快速进行文件比较,上传下载,同步等操作
    array_map 巧替 foreach
    mac brew安装mysql
  • 原文地址:https://www.cnblogs.com/zbtrs/p/8138750.html
Copyright © 2011-2022 走看看