zoukankan      html  css  js  c++  java
  • Opencv+C++之人脸识别二

    这两天课比较多,上次的两步法人脸识别代码一直没有补充完整,今天将整个实验代码show一下,同时将该方法的主要思想介绍下:

    上一节我们已经将图片进行降维处理,这样做的目的就是要在保持对象间差异的同时降低处理数据量。除了PCA外,LDA也是一种比较简单实用的降维方法,大家可以对比两种降维方法;基于PCA降维后的数据,我们接着要做的是用训练数据将测试数据表示出来

    接着通过以下的误差判别式来找到M近邻(误差值越小说明该训练样本跟测试样本的相似度越大)

           

    以上就完成了两步法中的第一步,第二步中用M近邻样本将测试样本再次标出(实际上这里的本质还是稀疏表示的方法,但是改进之处是单纯的稀疏法中稀疏项不确定,两步法中通过第一步的误差筛选确定了贡献度较大的训练样本)

    在M近邻中包含多个类的训练样本,我们要将每个类的训练样本累加起来,分别同测试样本做误差对比,将测试样本判定给误差最下的类

           

    OK,主要思想介绍了,下面就看代码实现

    /************************************************************************/
    /* ZhaoChaofeng
    */ 2013.4.16
    /************************************************************************/
    
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    
    #include <fstream>
    #include <sstream>
    #include <iostream>
    #include <string>
    
    using namespace cv;
    using namespace std;
    
    const double u=0.01f;
    const double v=0.01f;//the global parameter
    const int MNeighbor=40;//the M nearest neighbors
    // Number of components to keep for the PCA
    const int num_components = 100;
    //the M neighbor mats
    vector<Mat> MneighborMat;
    //the class index of M neighbor mats
    vector<int> MneighborIndex;
    //the number of object which used to training
    const int Training_ObjectNum=40;
    //the number of image that each object used
    const int Training_ImageNum=7;
    //the number of object used to testing
    const int Test_ObjectNum=40;
    //the image number
    const int Test_ImageNum=3;
    
    // Normalizes a given image into a value range between 0 and 255.
    Mat norm_0_255(const Mat& src) {
        // Create and return normalized image:
        Mat dst;
        switch(src.channels()) {
        case 1:
            cv::normalize(src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
            break;
        case 3:
            cv::normalize(src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
            break;
        default:
            src.copyTo(dst);
            break;
        }
        return dst;
    }
    
    // Converts the images given in src into a row matrix.
    Mat asRowMatrix(const vector<Mat>& src, int rtype, double alpha = 1, double beta = 0) {
        // Number of samples:
        size_t n = src.size();
        // Return empty matrix if no matrices given:
        if(n == 0)
            return Mat();
        // dimensionality of (reshaped) samples
        size_t d = src[0].total();
        // Create resulting data matrix:
        Mat data(n, d, rtype);
        // Now copy data:
        for(int i = 0; i < n; i++) {
            //
            if(src[i].empty()) {
                string error_message = format("Image number %d was empty, please check your input data.", i);
                CV_Error(CV_StsBadArg, error_message);
            }
            // Make sure data can be reshaped, throw a meaningful exception if not!
            if(src[i].total() != d) {
                string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src[i].total());
                CV_Error(CV_StsBadArg, error_message);
            }
            // Get a hold of the current row:
            Mat xi = data.row(i);
            // Make reshape happy by cloning for non-continuous matrices:
            if(src[i].isContinuous()) {
                src[i].reshape(1, 1).convertTo(xi, rtype, alpha, beta);
            } else {
                src[i].clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
            }
        }
        return data;
    }
    
    //convert int to string
    string Int_String(int index)
    {
        stringstream ss;
        ss<<index;
        return ss.str();
    }
    
    ////show the element of mat(used to test code)
    //void showMat(Mat RainMat)
    //{
    //    for (int i=0;i<RainMat.rows;i++)
    //    {
    //        for (int j=0;j<RainMat.cols;j++)
    //        {
    //            cout<<RainMat.at<float>(i,j)<<"  ";
    //        }
    //        cout<<endl;
    //    }
    //}
    //
    ////show the element of vector
    //void showVector(vector<int> index)
    //{
    //    for (int i=0;i<index.size();i++)
    //    {
    //        cout<<index[i]<<endl;
    //    }
    //}
    //
    //void showMatVector(vector<Mat> neighbor)
    //{
    //    for (int e=0;e<neighbor.size();e++)
    //    {
    //        showMat(neighbor[e]);
    //    }
    //}
    
    
    //Training function
    
    
    void Trainging()
    {
        // Holds some training images:
        vector<Mat> db;
    
        // This is the path to where I stored the images, yours is different!
        for (int i=1;i<=Training_ObjectNum;i++)
        {
            for (int j=1;j<=Training_ImageNum;j++)
            {
                string filename="s"+Int_String(i)+"/"+Int_String(j)+".pgm";
                db.push_back(imread(filename,IMREAD_GRAYSCALE));
            }
        }
    
        // Build a matrix with the observations in row:
        Mat data = asRowMatrix(db, CV_32FC1);
    
        // Perform a PCA:
        PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, num_components);
    
        // And copy the PCA results:
        Mat mean = pca.mean.clone();
        Mat eigenvalues = pca.eigenvalues.clone();
        Mat eigenvectors = pca.eigenvectors.clone();
    
        // The mean face:
        //imshow("avg", norm_0_255(mean.reshape(1, db[0].rows)));
    
        // The first three eigenfaces:
        //imshow("pc1", norm_0_255(pca.eigenvectors.row(0)).reshape(1, db[0].rows));
        //imshow("pc2", norm_0_255(pca.eigenvectors.row(1)).reshape(1, db[0].rows));
        //imshow("pc3", norm_0_255(pca.eigenvectors.row(2)).reshape(1, db[0].rows));
    
        ////get and save the training image information which decreased on dimensionality
        Mat mat_trans_eigen;
        Mat temp_data=data.clone();
        Mat temp_eigenvector=pca.eigenvectors.clone();
        gemm(temp_data,temp_eigenvector,1,NULL,0,mat_trans_eigen,CV_GEMM_B_T);
    
        //save the eigenvectors
        FileStorage fs(".\\eigenvector.xml", FileStorage::WRITE);
        fs<<"eigenvector"<<eigenvectors;
        fs<<"TrainingSamples"<<mat_trans_eigen;
        fs.release();
    }
    
    //Line combination of test sample used by training samples 
    //parameter:y stand for the test sample column vector;
    //x stand for the training samples matrix
    Mat LineCombination(Mat y,Mat x)
    {
        //the number of training samples
        size_t col=x.cols;
        //the result mat 
        Mat result=cvCreateMat(col,1,CV_32FC1);
        //the transposition of x and also work as a temp matrix
        Mat trans_x_mat=cvCreateMat(col,col,CV_32FC1);
        //construct the identity matrix
        Mat I=Mat::ones(col,col,CV_32FC1);
    
        //solve the Y=XA
        //result=x.inv(DECOMP_SVD);
            //result*=y;
        Mat temp=(x.t()*x+u*I);
        
        Mat temp_one=temp.inv(DECOMP_SVD);
        Mat temp_two=x.t()*y;
        result=temp_one*temp_two;
    
        return result;
    }
    
    //Error test
    //parameter:y stand for the test sample column vector;
    //x stand for the training samples matrix
    //coeff stand for the coefficient of training samples 
    void  ErrorTest(Mat y,Mat x,Mat coeff)
    {
        //the array store the coefficient
        map<double,int> Efficient;
    
        //compute the error
        for (int i=0;i<x.cols;i++)
        {
            Mat temp=x.col(i);
            double coefficient=coeff.at<float>(i,0);
            temp=coefficient*temp;
            double e=norm((y-temp),NORM_L2);
            Efficient[e]=i;//insert a new element
        }
    
        //select the minimum w col as the w nearest neighbors
        map<double,int>::const_iterator map_it=Efficient.begin();
        int num=0;
        //the map could sorted by the key one
        while (map_it!=Efficient.end() && num<MNeighbor)
        {
            MneighborMat.push_back(x.col(map_it->second));
            MneighborIndex.push_back(map_it->second);
            ++map_it;
            ++num;
        }
    
        //return MneighborMat;
    }
    
    //error test of two step
    //parameter:MneighborMat store the class information of M nearest neighbor samples
    int ErrorTest_Two(Mat y,Mat x,Mat coeff)
    {
        int result;
        bool flag=true;
        double minimumerror;
        //
        map<int,vector<Mat>> ErrorResult;
    
        //count the class of M neighbor
        for (int i=0;i<x.cols;i++)
        {
            //compare
            //Mat temp=x.col(i)==MneighborMat[i];
              //showMat(temp);
            //if (temp.at<float>(0,0)==255)
            //{
                int classinf=MneighborIndex[i];
                double coefficient=coeff.at<float>(i,0);
                Mat temp=x.col(i);
                temp=coefficient*temp;
                ErrorResult[classinf/Training_ImageNum].push_back(temp);
            //}
            
        }
    
        //
        map<int,vector<Mat>>::const_iterator map_it=ErrorResult.begin();
        while(map_it!=ErrorResult.end())
        {
            vector<Mat> temp_mat=map_it->second;
            int num=temp_mat.size();
            Mat temp_one;
            temp_one=Mat::zeros(temp_mat[0].rows,temp_mat[0].cols,CV_32FC1);
            while (num>0)
            {
                temp_one+=temp_mat[num-1];
                num--;
            }
            double e=norm((y-temp_one),NORM_L2);
            if (flag)
            {
                minimumerror=e;
                result=map_it->first+1;
                flag=false;
            }
            if (e<minimumerror)
            {
                minimumerror=e;
                result=map_it->first+1;
            }
            ++map_it;
        }
        return result;
    }
    
    //testing function
    //parameter:y stand for the test sample column vector;
    //x stand for the training samples matrix
    int testing(Mat x,Mat y)
    {
        // the class that test sample belongs to
        int classNum;
    
        //the first step: get the M nearest neighbors
        Mat coffecient=LineCombination(y.t(),x.t());
    
        //cout<<"the first step coffecient"<<endl;
        //showMat(coffecient);
    
        //map<Mat,int> MneighborMat=ErrorTest(y,x,coffecient);
        ErrorTest(y.t(),x.t(),coffecient);
    
        //cout<<"the M neighbor index"<<endl;
        //showVector(MneighborIndex);
        //cout<<"the M neighbor mats"<<endl;
        //showMatVector(MneighborMat);
    
        //the second step:
        //construct the W nearest neighbors mat
        int row=x.cols;//should be careful 
        Mat temp(row,MNeighbor,CV_32FC1);
        for (int i=0;i<MneighborMat.size();i++)
        {
            Mat temp_x=temp.col(i);
            if (MneighborMat[i].isContinuous())
            {
                MneighborMat[i].convertTo(temp_x,CV_32FC1,1,0);
            }
            else
            {
                MneighborMat[i].clone().convertTo(temp_x,CV_32FC1,1,0);
            }
        }
    
        //cout<<"the second step mat"<<endl;
        //showMat(temp);
    
        Mat coffecient_two=LineCombination(y.t(),temp);
    
        //cout<<"the second step coffecient"<<endl;
        //showMat(coffecient_two);
    
        classNum=ErrorTest_Two(y.t(),temp,coffecient_two);
        return classNum;
    }
    
    int main(int argc, const char *argv[]) {
        //the number which test true
        int TrueNum=0;
        //the Total sample which be tested
        int TotalNum=Test_ObjectNum*Test_ImageNum;
    
        //if there is the eigenvector.xml, it means we have got the training data and go to the testing stage directly;
        FileStorage fs(".\\eigenvector.xml", FileStorage::READ);
        if (fs.isOpened())
        {
            //if the eigenvector.xml file exist,read the mat data
            Mat mat_eigenvector;
            fs["eigenvector"] >> mat_eigenvector;    
            Mat mat_Training;
            fs["TrainingSamples"]>>mat_Training;
    
            for (int i=1;i<=Test_ObjectNum;i++)
            {
                int ClassTestNum=0;
                for (int j=Training_ImageNum+1;j<=Training_ImageNum+Test_ImageNum;j++)
                {
                    string filename="s"+Int_String(i)+"/"+Int_String(j)+".pgm";
                    Mat TestSample=imread(filename,IMREAD_GRAYSCALE);
                    Mat TestSample_Row;
                    TestSample.reshape(1,1).convertTo(TestSample_Row,CV_32FC1,1,0);//convert to row mat
                    Mat De_deminsion_test;
                    gemm(TestSample_Row,mat_eigenvector,1,NULL,0,De_deminsion_test,CV_GEMM_B_T);// get the test sample which decrease the dimensionality
    
                    //cout<<"the test sample"<<endl;
                    //showMat(De_deminsion_test.t());
                    //cout<<"the training samples"<<endl;
                    //showMat(mat_Training);
    
                    int result=testing(mat_Training,De_deminsion_test);
                    //cout<<"the result is"<<result<<endl;
                    if (result==i)
                    {
                        TrueNum++;
                        ClassTestNum++;
                    }
                    MneighborIndex.clear();
                    MneighborMat.clear();//及时清除空间
                }
                cout<<""<<Int_String(i)<<"类测试正确的图片数:  "<<Int_String(ClassTestNum)<<endl;
            }
            fs.release();
        }
        else
        {
            Trainging();
        }
        // Show the images:
        waitKey(0);
    
        // Success!
        return 0;
    }

    在以上的实现中,有些opencv的实现需要特别注意一下:

    (1)坑爹的Mat类型,它虽然可以方便的让我们实现图像数据的矩阵化,并给出了一系列的操作方法,但是,在调试中,它却不能像一般变量一样,让我们直观的看到;我用一个比较笨的方法:自己写一个方法,在调试中调用,呈现关键矩阵的数据

    (2)另外一个就是将训练数据做一个保存,用到了opencv中的FileStorage类;有关对中间数据的存储通常会用到.xml或者.yml文件,以下对其做个简单介绍

      新版本的OpenCV的C++接口中,imwrite()和imread()只能保存整数数据,且需要以图像格式。当需要保存浮点数据或者XML/YML文件时,之前的C语言接口cvSave()函数已经在C++接口中被删除,代替它的是    FileStorage类。这个类非常的方便,封装了很多数据结构的细节,编程的时候可以根据统一的接口对数据结构进行保存。

        1. FileStorage类写XML/YML文件

             •   新建一个FileStorage对象,以FileStorage::WRITE的方式打开一个文件。

             •   使用 << 操作对该文件进行操作。

             •   释放该对象,对文件进行关闭。

            例子如下:

    FileStorage fs("test.yml", FileStorage::WRITE);
        fs << "frameCount" << 5;
        time_t rawtime; time(&rawtime);
        fs << "calibrationDate" << asctime(localtime(&rawtime));
        Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1); //又一种Mat初始化方式
        Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0);
        fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;
        
        //features为一个大小为3的向量,其中每个元素由随机数x,y和大小为8的uchar数组组成
        fs << "features" << "[";
        for( int i = 0; i < 3; i++ )
        {
            int x = rand() % 640;
            int y = rand() % 480;
            uchar lbp = rand() % 256;
            fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
            for( int j = 0; j < 8; j++ )
                fs << ((lbp >> j) & 1);
            fs << "]" << "}";
        }
        fs << "]";
        fs.release();

    2. FileStorage类读XML/YML文件

           FileStorage对存储内容在内存中是以层次的节点组成的,每个节点类型为FileNode,FileNode可以使单个的数值、数组或者一系列FileNode的集合。FileNode又可以看做是一个容器,使用iterator接口可以对该节点内更小单位的内容进行访问,例如访问到上面存储的文件中"features"的内容。步骤与写文件类似:

             •   新建FileStorage对象,以FileStorage::READ 方式打开一个已经存在的文件

             •   使用FileStorage::operator []()函数对文件进行读取,或者使用FileNode和FileNodeIterator

             •   使用FileStorage::release()对文件进行关闭

             例子如下:

    FileStorage fs("test.yml", FileStorage::READ);
    
        //方式一: []操作符
        int frameCount = (int)fs["frameCount"];
        
        //方式二: FileNode::operator >>()
        string date;
        fs["calibrationDate"] >> date;
        
        Mat cameraMatrix2, distCoeffs2;
        fs["cameraMatrix"] >> cameraMatrix2;
        fs["distCoeffs"] >> distCoeffs2;
        
        //注意FileNodeIterator的使用,似乎只能用一维数组去读取里面所有的数据
        FileNode features = fs["features"];
        FileNodeIterator it = features.begin(), it_end = features.end();
        int idx = 0;
        std::vector<uchar> lbpval;
        for( ; it != it_end; ++it, idx++ )
        {
            cout << "feature #" << idx << ": ";
            cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";
            (*it)["lbp"] >> lbpval;  //直接读出一维向量
    
            for( int i = 0; i < (int)lbpval.size(); i++ )
                cout << " " << (int)lbpval[i];
            cout << ")" << endl;
        }
        fs.release();

    另外,注意在新建FileStorage对象之后,并以READ或WRITE模式打开文件之后,可以用FileStorage::isOpened()查看文件状态,判断是否成功打开了文件。

    有关FileStorage类的相关内容引用自:http://www.cnblogs.com/summerRQ/articles/2524560.html

    我使用的是opencv2.4.0版本实现的方法,opencv有个欠缺的地方就是版本间的兼容性,虽然做了些工作,但是使用起来还是有些不流畅。不过,值得称赞的是其将OOP的思想应用到库的开发中,很多核心对象和相关操作被封装起来,方便使用。

  • 相关阅读:
    硬件调试软件
    ICMP(Internet Control Message Protocol)
    算法网站
    下载安装
    netcat 实现端口转发
    mqtt 连接工具
    Linux(CentOS7)安装zip、unzip命令
    awk 两个字符串互换位置
    创建一个swift项目
    屏幕录制
  • 原文地址:https://www.cnblogs.com/zcftech/p/3026902.html
Copyright © 2011-2022 走看看