Given an array of n integers where n > 1, nums
,
return an array output
such that output[i]
is
equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
要考虑数组中0的个数,没有零,有一个0和有两个0的情况是不同的,如下:
class Solution { public: vector<int> productExceptSelf(vector<int>& nums) { int product=1; int nums_zero=0; int one_zero_pos=0; vector<int> output; for(int i=0;i<nums.size();++i) { if(nums[i]==0 && nums_zero==0) { nums_zero++; one_zero_pos=i; continue; } else if(nums[i]==0 && nums_zero==1) { nums_zero++; break; } product=product*nums[i]; } if(nums_zero==0) {//没有0 for(int i=0;i<nums.size();++i) {//所有数的乘积除以该数 output.push_back(product/nums[i]); } } else if(nums_zero==1) { for(int i=0;i<nums.size();++i) {//除了为0的位置的值不为0外,其他位置都是0 if(i!=one_zero_pos) output.push_back(0); else output.push_back(product); } } else { for(int i=0;i<nums.size();++i) {//全是0 output.push_back(0); } } return output; } };