3 x 3 Gaussian Kernel
5 x 5 Gaussian Kernel
Code
/*
作者:郑大峰
时间:2019年09月23日
环境:OpenCV 4.1.1 + VS2017
内容:Gaussian Blur on Images with OpenCV
*/
#include "pch.h"
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat image = imread("claudia.png");
if (image.empty())
{
cout << "Could not open or find the image" << endl;
cin.get();
return -1;
}
//Blur the image with 3x3 Gaussian kernel
Mat image_blurred_with_3x3_kernel;
GaussianBlur(image, image_blurred_with_3x3_kernel, Size(3, 3), 0);
//Blur the image with 5x5 Gaussian kernel
Mat image_blurred_with_5x5_kernel;
GaussianBlur(image, image_blurred_with_5x5_kernel, Size(5, 5), 0);
//Define names of the windows
String window_name = "claudia.png";
String window_name_blurred_with_3x3_kernel = "claudia.png Blurred with 3 x 3 Gaussian Kernel";
String window_name_blurred_with_5x5_kernel = "claudia.png Blurred with 5 x 5 Gaussian Kernel";
// Create windows with above names
namedWindow(window_name);
namedWindow(window_name_blurred_with_3x3_kernel);
namedWindow(window_name_blurred_with_5x5_kernel);
// Show our images inside the created windows.
imshow(window_name, image);
imshow(window_name_blurred_with_3x3_kernel, image_blurred_with_3x3_kernel);
imshow(window_name_blurred_with_5x5_kernel, image_blurred_with_5x5_kernel);
waitKey(0); // Wait for any key stroke
destroyAllWindows(); //destroy all open windows
return 0;
}
Result
从图像可以看到,核心的尺寸越大,图像细节丢失越严重。不过相较均值滤波,效果要好一些。