Netty writeAndFlush()方法分为两步, 先 write 再 flush
@Override public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) { DefaultChannelHandlerContext next; next = findContextOutbound(MASK_WRITE); ReferenceCountUtil.touch(msg, next); next.invoker.invokeWrite(next, msg, promise); next = findContextOutbound(MASK_FLUSH); next.invoker.invokeFlush(next); return promise; }
以上是DefaultChannelHandlerContext中的writeAndFlush方法, 可见实际上是先调用了write, 然后调用flush
1. write
write方法从TailHandler开始, 穿过中间自定义的各种handler以后到达HeadHandler, 然后调用了HeadHandler的成员变量Unsafe的write
如下
@Override public void write(Object msg, ChannelPromise promise) { ChannelOutboundBuffer outboundBuffer = this.outboundBuffer; if (outboundBuffer == null) { // If the outboundBuffer is null we know the channel was closed and so // need to fail the future right away. If it is not null the handling of the rest // will be done in flush0() // See https://github.com/netty/netty/issues/2362 safeSetFailure(promise, CLOSED_CHANNEL_EXCEPTION); // release message now to prevent resource-leak ReferenceCountUtil.release(msg); return; } outboundBuffer.addMessage(msg, promise); }
最终会把需要write的msg和promise(也就是一个future, 我们拿到手的future, 添加Listener的也是这个)放入到outboundBuffer中, msg和promise在outboundBuffer中的存在形式是一个自定义的结构体Entry.
也就是说调用write方法实际上并不是真的将消息写出去, 而是将消息和此次操作的promise放入到了一个队列中
2. flush
flush也是从Tail开始, 最后到Head, 最终调用的也是Head里的unsafe的flush0()方法, 然后flush0()里再调用doWrite()方法, 如下:
@Override protected void doWrite(ChannelOutboundBuffer in) throws Exception { int writeSpinCount = -1; for (;;) { Object msg = in.current(); if (msg == null) { // Wrote all messages. clearOpWrite(); break; } if (msg instanceof ByteBuf) { ByteBuf buf = (ByteBuf) msg; int readableBytes = buf.readableBytes(); if (readableBytes == 0) { in.remove(); continue; } boolean setOpWrite = false; boolean done = false; long flushedAmount = 0; if (writeSpinCount == -1) { writeSpinCount = config().getWriteSpinCount(); } for (int i = writeSpinCount - 1; i >= 0; i --) { int localFlushedAmount = doWriteBytes(buf); // 这里才是实际将数据写出去的地方if (localFlushedAmount == 0) { setOpWrite = true; break; } flushedAmount += localFlushedAmount; if (!buf.isReadable()) { done = true; break; } } in.progress(flushedAmount); if (done) { in.remove(); } else { incompleteWrite(setOpWrite); break; } } else if (msg instanceof FileRegion) { FileRegion region = (FileRegion) msg; boolean setOpWrite = false; boolean done = false; long flushedAmount = 0; if (writeSpinCount == -1) { writeSpinCount = config().getWriteSpinCount(); } for (int i = writeSpinCount - 1; i >= 0; i --) { long localFlushedAmount = doWriteFileRegion(region); if (localFlushedAmount == 0) { setOpWrite = true; break; } flushedAmount += localFlushedAmount; if (region.transfered() >= region.count()) { done = true; break; } } in.progress(flushedAmount); if (done) { in.remove(); // 根据写出的数据的数量情况, 来判断操作是否完成, 如果完成则调用 in.remove() } else { incompleteWrite(setOpWrite); break; } } else { throw new UnsupportedOperationException("unsupported message type: " + StringUtil.simpleClassName(msg)); } } }
红字部分就是最后将数据写出去的地方, 这里写数据最终调用的是 GatheringByteChannel 的 write() 方法, 这是个原生Java接口, 具体实现依赖于实现这个接口的Java类, 例如会调用 NIO 的 SocketChannel 的write()方法, 至此, 实际写数据的过程出现了, SocketChannel可以运行在non-blocking模式, 也就是非阻塞异步模式, write数据会马上返回写入的数据数量 (并不一定是所有数据都写入成功, 对于是否写入了所有数据, Netty有自己的处理逻辑, 也就是上面代码中的红字的那段for循环, 具体参看下SocketChannel的javadoc和netty源码).
当所有数据写入SocketChannel成功, 开始调用in.remove(), 这个 in 就是第一步 1. write 里的那个 outboundBuffer, 他的类型是 ChannelOutboundBuffer, 代码如下:
public final boolean remove() { if (isEmpty()) { return false; } Entry e = buffer[flushed]; Object msg = e.msg; if (msg == null) { return false; } ChannelPromise promise = e.promise; int size = e.pendingSize; e.clear(); flushed = flushed + 1 & buffer.length - 1; if (!e.cancelled) { // only release message, notify and decrement if it was not canceled before. safeRelease(msg); safeSuccess(promise); // 这里, 调用了promise的trySuccess()方法, 触发Listener decrementPendingOutboundBytes(size); } return true; }
最后会调用Promise的notifyListeners()操作, 触发Listener完成整个异步流程
---------
最后, 回到我们应用netty的时候的代码
@Override public void channelRead(ChannelHandlerContext ctx, Object msg) { ctx.writeAndFlush(new Object()).addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // do sth } else { // do sth } } }); }
这就是整个流程
最后提一下, Netty的AbstractNioChannel里封装了selectionKey, 在accept socket的时候, socket会被注册到eventLoop()的Selector, 这个selectionKey就会被赋值, 如下
selectionKey = javaChannel().register(eventLoop().selector, 0, this);
在以后Selector的select()的时候, 则会通过这个key来获取到channel, 然后调用 AbstractChannel 里的 DefaultChannelPipeline 来触发 Handler 的 connect, read, write 等等事件...