zoukankan      html  css  js  c++  java
  • elasticsearch7 配置篇

    学习了这么多,终于开始搭建生产环境了,这一篇主要讲解配置项,以及支持中文分词的ik安装,集群的搭建。
    配置项确实挺多的,但把几个常用配置熟悉就好,而且就像elasticsearch官方文档所说,不存在某个使得性能大幅度提升的配置。


    配置项

    一下子看到这么多配置项,可能就吓坏了,不要怕,用到的并不多。

    cluster.name: elasticsearch
    # 配置的集群名称,默认是elasticsearch,es服务会通过广播方式自动连接在同一网段下的es服务,通过多播方式进行通信,同一网段下可以有多个集群,通过集群名称这个属性来区分不同的集群。
    
    node.name: "Franz Kafka"
    # 当前配置所在机器的节点名,你不设置就默认随机指定一个name列表中名字,该name列表在es的jar包中config文件夹里name.txt文件中,其中有很多作者添加的有趣名字。
    
    node.master: true
    指定该节点是否有资格被选举成为node(注意这里只是设置成有资格, 不代表该node一定就是master),默认是true,es是默认集群中的第一台机器为master,如果这台机挂了就会重新选举master。
    
    node.data: true
    # 指定该节点是否存储索引数据,默认为true。
    
    index.number_of_shards: 5
    # 设置默认索引分片个数,默认为5片。
    
    index.number_of_replicas: 1
    # 设置默认索引副本个数,默认为1个副本。如果采用默认设置,而你集群只配置了一台机器,那么集群的健康度为yellow,也就是所有的数据都是可用的,但是某些复制没有被分配
    # (健康度可用 curl 'localhost:9200/_cat/health?v' 查看, 分为绿色、黄色或红色。绿色代表一切正常,集群功能齐全,黄色意味着所有的数据都是可用的,但是某些复制没有被分配,红色则代表因为某些原因,某些数据不可用)。
    
    path.conf: /path/to/conf
    # 设置配置文件的存储路径,默认是es根目录下的config文件夹。
    
    path.data: /path/to/data
    # 设置索引数据的存储路径,默认是es根目录下的data文件夹,可以设置多个存储路径,用逗号隔开,例:
    # path.data: /path/to/data1,/path/to/data2
    
    path.work: /path/to/work
    # 设置临时文件的存储路径,默认是es根目录下的work文件夹。
    
    path.logs: /path/to/logs
    # 设置日志文件的存储路径,默认是es根目录下的logs文件夹 
    
    path.plugins: /path/to/plugins
    # 设置插件的存放路径,默认是es根目录下的plugins文件夹, 插件在es里面普遍使用,用来增强原系统核心功能。
    
    bootstrap.mlockall: true
    # 设置为true来锁住内存不进行swapping。因为当jvm开始swapping时es的效率 会降低,所以要保证它不swap,可以把ES_MIN_MEM和ES_MAX_MEM两个环境变量设置成同一个值,并且保证机器有足够的内存分配给es。 同时也要允许elasticsearch的进程可以锁住内# # 存,linux下启动es之前可以通过`ulimit -l unlimited`命令设置。
    
    network.bind_host: 192.168.0.1
    # 设置绑定的ip地址,可以是ipv4或ipv6的,默认为0.0.0.0,绑定这台机器的任何一个ip。
    
    network.publish_host: 192.168.0.1
    # 设置其它节点和该节点交互的ip地址,如果不设置它会自动判断,值必须是个真实的ip地址。
    
    network.host: 192.168.0.1
    # 这个参数是用来同时设置bind_host和publish_host上面两个参数。
    
    transport.tcp.port: 9300
    # 设置节点之间交互的tcp端口,默认是9300。
    
    transport.tcp.compress: true
    # 设置是否压缩tcp传输时的数据,默认为false,不压缩。
    
    http.port: 9200
    # 设置对外服务的http端口,默认为9200。
    
    http.max_content_length: 100mb
    # 设置内容的最大容量,默认100mb
    
    http.enabled: false
    # 是否使用http协议对外提供服务,默认为true,开启。
    
    gateway.type: local
    # gateway的类型,默认为local即为本地文件系统,可以设置为本地文件系统,分布式文件系统,hadoop的HDFS,和amazon的s3服务器等。
    
    gateway.recover_after_nodes: 1
    # 设置集群中N个节点启动时进行数据恢复,默认为1。
    
    gateway.recover_after_time: 5m
    # 设置初始化数据恢复进程的超时时间,默认是5分钟。
    
    gateway.expected_nodes: 2
    # 设置这个集群中节点的数量,默认为2,一旦这N个节点启动,就会立即进行数据恢复。
    
    cluster.routing.allocation.node_initial_primaries_recoveries: 4
    # 初始化数据恢复时,并发恢复线程的个数,默认为4。
    
    cluster.routing.allocation.node_concurrent_recoveries: 2
    # 添加删除节点或负载均衡时并发恢复线程的个数,默认为4。
    
    indices.recovery.max_size_per_sec: 0
    # 设置数据恢复时限制的带宽,如入100mb,默认为0,即无限制。
    
    indices.recovery.concurrent_streams: 5
    # 设置这个参数来限制从其它分片恢复数据时最大同时打开并发流的个数,默认为5。
    
    discovery.zen.minimum_master_nodes: 1
    # 设置这个参数来保证集群中的节点可以知道其它N个有master资格的节点。默认为1,对于大的集群来说,可以设置大一点的值(2-4)
    
    discovery.zen.ping.timeout: 3s
    # 设置集群中自动发现其它节点时ping连接超时时间,默认为3秒,对于比较差的网络环境可以高点的值来防止自动发现时出错。
    
    discovery.zen.ping.multicast.enabled: false
    # 设置是否打开多播发现节点,默认是true。
    
    discovery.zen.ping.unicast.hosts: ["host1", "host2:port", "host3[portX-portY]"]
    # 设置集群中master节点的初始列表,可以通过这些节点来自动发现新加入集群的节点。
    

    elasticsearch7版本引入的新集群协调子系统了解一哈,新增两个如下配置项

    discovery.seed_hosts
    cluster.initial_master_nodes
    

    官方文档栗子:

    discovery.seed_hosts:
       - 192.168.1.10:9300
       - 192.168.1.11 
       - seeds.mydomain.com 
    cluster.initial_master_nodes: 
       - master-node-a
       - master-node-b
       - master-node-c
    

    伪分布式集群搭建

    这里不得不提elasticsearch的广播和单播机制,这也是困扰了我一个礼拜的坑,生产环境下应当采用单播方式,因此仅仅配置network.host无法在多机集群环境下发现其他节点,必须配置network.publish_host。
    这里采用yml+docker-compose完成伪分布式集群的搭建。真分布式集群安装仅需稍作修改,这里就不赘述了。
    注意点:在宿主机上【宿主机】修改/etc/sysctl.conf 添加vm.max_map_count=262144。启动sysctl -p
    master elasticsearch.yml

    cluster.name: docker-cluster
    
    node.name: master
    node.master: true
    node.data: true
    network.host: 0.0.0.0
    network.publish_host: 192.168.31.45 # 这里是我内网ip
    cluster.initial_master_nodes:
      - master
    
    http.cors.enabled: true
    http.cors.allow-origin: "*"
    

    master docker-compose.yml

    version: '3.7'
    services:
      es:
        image: docker.elastic.co/elasticsearch/elasticsearch:7.1.1
        container_name: master
        environment:
          - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
        volumes:
          - esdata:/usr/share/elasticsearch/data
          - ./elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml
        ports:
          - 9200:9200
          - 9300:9300
    
    volumes:
      esdata:
    

    slave elasticsearch.yml

    cluster.name: docker-cluster
    
    node.name: slave
    node.master: false
    node.data: true
    network.host: 0.0.0.0
    network.publish_host: 192.168.31.45
    http.port: 9201
    transport.tcp.port: 9301
    discovery.seed_hosts:
      - 192.168.31.45:9300
    
    http.cors.enabled: true
    http.cors.allow-origin: "*"
    

    slave docker-compose.yml

    version: '3.7'
    services:
      es:
        image: docker.elastic.co/elasticsearch/elasticsearch:7.1.1
        container_name: slave
        environment:
          - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
        volumes:
          - esdata2:/usr/share/elasticsearch/data
          - ./elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml
        ports:
          - 9201:9201
          - 9301:9301
    
    volumes:
      esdata2:
    

    运行elasticsearch-head

    for Elasticsearch 5.x: docker run -p 9100:9100 mobz/elasticsearch-head:5
    for Elasticsearch 2.x: docker run -p 9100:9100 mobz/elasticsearch-head:2
    for Elasticsearch 1.x: docker run -p 9100:9100 mobz/elasticsearch-head:1
    for fans of alpine there is mobz/elasticsearch-head:5-alpine
    
    open http://localhost:9100/
    

    至此集群搭建完成,接下来就是分词操作。

  • 相关阅读:
    剑指OFFER----面试题54. 二叉搜索树的第k大节点
    剑指OFFER----面试题53
    剑指OFFER----面试题53
    DevExpress ASP.NET Core v19.1版本亮点:Visual Studio集成
    Kendo UI for jQuery使用教程:初始化jQuery插件
    代码自动补全插件CodeMix全新发布CI 2019.7.15|改进CSS颜色辅助
    MyEclipse使用教程:使用工作集组织工作区
    DevExpress ASP.NET Core v19.1版本亮点:Pivot Grid控件等
    Kendo UI for jQuery使用教程:小部件DOM元素结构
    MyEclipse使用教程——使用DevStyle Icon Designer(二)
  • 原文地址:https://www.cnblogs.com/zenan/p/10983580.html
Copyright © 2011-2022 走看看