zoukankan      html  css  js  c++  java
  • 【CF1283C】Friends and Gifts

      题目可以想象在一张图上,把每个同学看成点,送礼关系看成边。

      我们只关注每个点的入度与出度,因为它可以表示同学送礼与收礼情况。

      对于 $f_i=j;(1 le i,j le n,;i≠j)$ 的情况,将第 $i$ 个点出度加 $1$,第 $j$ 个点入度加 $1$(可以看成从 $i$ 到 $j$ 连一条单向边)。

      那么就会出现一些特征不同的节点,分成四类:

      1. 入度出度均为 $1$;
      2. 入度出度均为 $0$;
      3. 入度为 $1$,出度为 $0$;
      4. 入度为 $0$,出度为 $1$。

      其中,第 $1$ 类点不需要处理,而且第 $3$ 和第 $4$ 类点可以进行匹配。

      那问题就转化成如何处理第 $2$ 类点。

      讨论两种情况:

      • 第 $2$ 类点个数只有 $1$ 个,那么它可以让一个第 $3$ 类点连向它,让第 $3$ 类点变成第 $1$ 类,自己变成第 $3$ 类点,再让第 $3$、$4$ 类点匹配;
      • 第 $2$ 类点不止 $1$ 个时,我们可以让所有第 $2$ 类点组成封闭的环,使其全部变成第 $1$ 类点,再让第 $3$、$4$ 类点匹配。

      注意到,一张有向图的节点入度和等于出度和,而第 $1$、$2$ 类点入出度均相等,所以第 $3$ 类点一定可以和第 $4$ 类点两两匹配。

      当所有点变成第 $1$ 类点时,匹配即完成。

      参考代码:

    #include <cstdio>
    
    int n, a, in[200010], out[200010], ans[200010];
    int aa[200010], bb[200010], cc[200010], cnt, k, s1, s2, s3;
    
    int main(){
    
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%d", &a), a > 0 ? out[i]++, in[a]++, ans[i] = a : 0;
    
        for(int i = 1; i <= n; i++)
            if(!in[i] && !out[i])
                k = i, cnt++;
    
        // 处理第 2 类点只有 1 个的情况
        if(cnt == 1){
            for(int i = 1; i <= n; i++)
                if(in[i] && !out[i]){
                    out[i] = 1, ans[i] = k, in[k] = 1;
                    break;
                }
        }
    
        // 将第 3 类点与第 4 类点进行匹配
        for(int i = 1; i <= n; i++){
            if(in[i] && !out[i])
                aa[++s1] = i;
            if(!in[i] && out[i])
                bb[++s2] = i;
        }
        for(int i = 1; i <= s1; i++)
            out[aa[i]] = 1, in[bb[i]] = 1, ans[aa[i]] = bb[i];
    
        // 处理第二类点至少有 2 个的情况
        for(int i = 1; i <= n; i++)
            if(!in[i] && !out[i])
                cc[++s3] = i;
    
        for(int i = 1; i < s3; i++)
            out[cc[i]] = 1, ans[cc[i]] = cc[i + 1], in[cc[i + 1]] = 1;
        ans[cc[s3]] = cc[1];        // 首尾相接形成环
    
        for(int i = 1; i <= n; i++)
            printf("%d ", ans[i]);
        puts("");
    
        return 0;
    }
  • 相关阅读:
    研究生第二学期总结
    Android应用开发EditText文本内容变化监听方法
    Android 自定义动画 Loading
    UML建模之活动图介绍(Activity Diagram)
    UML学习(二)-----类图
    UML系列图--用例图
    Lesson9 some interesting things in C#
    Lesson10 Fianl and fellings
    Lesson 7: C#多线程
    浅谈android Socket 通信及自建ServerSocket服务端常见问题
  • 原文地址:https://www.cnblogs.com/zengpeichen/p/12240553.html
Copyright © 2011-2022 走看看