typedef struct _IO_FILE FILE; //文件流类型
- extern struct _IO_FILE *stdin; /* 标准输入流 */
extern struct _IO_FILE *stdout; /* 标准输出流 */
extern struct _IO_FILE *stderr; /* 错误流 */
#ifdef __STDC__
/* C89/C99 say they're macros. Make them happy. */
#define stdin stdin
#define stdout stdout
#define stderr stderr
#endif
从上面源码看stdin,stdout,stderr是文件流指针,看看stdin,stdout,stderr是如何定义的
_IO_FILE *stdin = (FILE *) &_IO_2_1_stdin_;
_IO_FILE *stdout = (FILE *) &_IO_2_1_stdout_;
_IO_FILE *stderr = (FILE *) &_IO_2_1_stderr_;
继续查看_IO_2_1_stdin_的定义
DEF_STDFILE(_IO_2_1_stdin_, 0, 0, _IO_NO_WRITES);
DEF_STDFILE(_IO_2_1_stdout_, 1, &_IO_2_1_stdin_, _IO_NO_READS);
DEF_STDFILE(_IO_2_1_stderr_, 2, &_IO_2_1_stdout_, _IO_NO_READS+_IO_UNBUFFERED);
DEF_STDFILE是一个宏定义,用于初始化C库中的FILE结构,_IO_2_1_stdin__IO_2_1_stdout__IO_2_1_stderr_分别用于0,1,2的初始化,这样c库的文件指针跟系统的文件描述符关联起来了,另外注意后面的标志位,stdin是不可写,stdout不可读,stderr不可读不可写没缓冲
通过上面分析可以得知stdin,stdout,stderr是file类的文件指针
I/O缓冲引出的有趣问题。
C库的I/O接口对文件I/O进行了封装为了提高性能,其引入了缓存机制,共有3种缓存机制:全缓存,行缓存及无缓存
全缓存一般用于访问真正的磁盘文件。C库为文件访问申请一块内存,只有当文件内容将缓存填满或者执行flush时,C库才会将缓存内容写入到内核中。
行缓存一般用于访问终端,当遇到一个换行符时,就会引发真正的I/O操作。
无缓存那就不用多说了
C库的fopen用于打开文件,其内部实现必然要使用open系统调用。那么fopen的各个标志位又对应open的哪些标志位呢?请看表2-1。
_IO_FILE *
_IO_new_file_fopen (fp, filename, mode, is32not64)
_IO_FILE *fp;
const char *filename;
const char *mode;
int is32not64;
{
int oflags = 0, omode;
int read_write;
int oprot = 0666;
int i;
_IO_FILE *result;
#ifdef _LIBC
const char *cs;
const char *last_recognized;
#endif
if (_IO_file_is_open (fp))
return 0;
switch (*mode)
{
case 'r':
omode = O_RDONLY;
read_write = _IO_NO_WRITES;
break;
case 'w':
omode = O_WRONLY;
oflags = O_CREAT|O_TRUNC;
read_write = _IO_NO_READS;
break;
case 'a':
omode = O_WRONLY;
oflags = O_CREAT|O_APPEND;
read_write = _IO_NO_READS|_IO_IS_APPENDING;
break;
default:
__set_errno (EINVAL);
return NULL;
}
#ifdef _LIBC
last_recognized = mode;
#endif
for (i = 1; i < 7; ++i)
{
switch (*++mode)
{
case ' ':
break;
case '+':
omode = O_RDWR;
read_write &= _IO_IS_APPENDING;
#ifdef _LIBC
last_recognized = mode;
#endif
continue;
case 'x':
oflags |= O_EXCL;
#ifdef _LIBC
last_recognized = mode;
#endif
continue;
case 'b':
#ifdef _LIBC
last_recognized = mode;
#endif
continue;
case 'm':
fp->_flags2 |= _IO_FLAGS2_MMAP;
continue;
case 'c':
fp->_flags2 |= _IO_FLAGS2_NOTCANCEL;
continue;
case 'e':
#ifdef O_CLOEXEC
oflags |= O_CLOEXEC;
#endif
fp->_flags2 |= _IO_FLAGS2_CLOEXEC;
continue;
default:
/* Ignore. */
continue;
}
break;
}
result = _IO_file_open (fp, filename, omode|oflags, oprot, read_write,
is32not64);
fdopen与fileno
Linux提供了文件描述符,而C库又提供了文件流。在平时的工作中,有时候需要在两者之间进行切换,因此C库提供了两个API:
#include <stdio.h>
FILE *fdopen(int fd, const char *mode);
int fileno(FILE *stream);
fdopen用于从文件描述fd中生成一个file指针,而fileno则用于从文件指针中得到对应的文件描述符
查看fdopen的实现,其基本工作是创建一个新的文件流FILE,并建立文件流FILE与描述符的对应关系。我们以fileno的简单实现,来了解文件流FILE与文件描述符fd的关系。——因为该函数代码较长,在此就不罗列C库的代码了。代码如下:
int fileno (_IO_FILE* fp)
{
CHECK_FILE (fp, EOF);
if (!(fp->_flags & _IO_IS_FILEBUF) || _IO_fileno (fp) < 0)
{
__set_errno (EBADF);
return -1;
}
return _IO_fileno (fp);
}
#define _IO_fileno(FP) ((FP)->_fileno)
从fileno的实现基本上就可以得知文件流与文件描述符的对应关系。文件流FILE保存了文件描述符的值。当从文件流转换到文件描述符时,可以直接通过当前FILE保存的值_fileno得到fd。而从文件描述符转换到文件流时,C库返回的都是一个重新申请的文件流FILE,且这个FILE的_fileno保存了文件描述符。
因此无论是fdopen还是fileno,关闭文件时,都要使用fclose来关闭文件,而不是用close。因为只有采用此方式,fclose作为C库函数,才会释放文件流FILE占用的内存。