zoukankan      html  css  js  c++  java
  • [模板] 扫描线

    一、扫描线求矩形面积并 


    如图所示 总矩形面积并等于每两根蓝线间的面积和。

    考虑将矩形按x轴排序,只需要知道每个离散的x点上被矩形覆盖的长度line, 和下一条扫描线的x轴可知之间面积为line * (arr[j].x - arr[i].x)

    所以只需要维护每一条扫描线的长度即可,线段树O(Nlogn) 暴力维护O(n^2)

    题目链接 https://vjudge.net/problem/POJ-1151

    线段树维护

    const int MAXN = 1e6 + 10;
    int tf = 0, rf = 0;
    
    struct rec
    {
    	ld a, b, c, d;
    }pot[MAXN] = {0};
    
    struct node
    {
    	ld x;
    	int y1, y2, ok;
    	node(){}
    	node(ld a, int b, int c, int d)
    	{ x = a, y1 = b, y2 = c, ok = d; }
    }arr[MAXN];
    
    bool cmp(node a, node b)
    {
    	if(a.x != b.x)
    		return a.x < b.x;
    	else return a.ok > b.ok;
    }
    
    struct sgt
    {
    	int l, r, cnt; //节点l = r = 1 代表以1开头2结尾的段的扫描长度 l = 1, r = 2代表1开头3结尾的段的扫描长度 
    	double len; //cnt代表当前段内的标记次数, 若大于1则不用下探 
    }t[MAXN << 2];
    
    ld vy[MAXN] = {0};
    int ret(ld x) { return lower_bound(vy, vy + tf, x) - vy + 1; } //树是从1开始建的, 离散也从1离散 
    double raw(int x) {return vy[x - 1]; }
    
    void build(int now, int l, int r)
    {
    	t[now].l = l, t[now].r = r;
    	t[now].len = 0, t[now].cnt = 0;
    	if(l == r) return ;
    	int mid = (l + r) / 2;
    	build(now * 2, l, mid);
    	build(now * 2 + 1, mid + 1, r);
    }
    
    void push(int now)
    {
    	if(t[now].cnt) //如果当前段被完全覆盖 则长度为len(r + 1) - len(l) 
    		t[now].len = raw(t[now].r + 1) - raw( t[now].l);
    	else //否则合并 
    		t[now].len = t[now * 2].len + t[now * 2 + 1].len;
    }
    
    void change(int now, int l, int r, int v)
    {
    	if(t[now].l >= l && t[now].r <= r) 
    	{	
    		t[now].cnt += v; //完全包含的段直接标记即可 
    		push(now);
    		return ;
    	}
    	int mid = (t[now].l + t[now].r) / 2;
    	if(l <= mid) change(now * 2, l, r, v);
    	if(r > mid) change(now * 2 + 1, l, r, v);
    	push(now);
    }
    
    int main()
    { 
    	int n, ttt = 1;
    
    	while(scanf("%d", &n) && n)
    	{
    		tf = 0, rf = 0;
    		fr(i, 0, n)
    		{ 
    			scanf("%lf%lf%lf%lf", &pot[i].a, &pot[i].b, &pot[i].c, &pot[i].d);
    			vy[tf++] = pot[i].b; vy[tf++] = pot[i].d;
    		}
    		
    		sort(vy, vy + tf); //离散所有y值 
    		tf = unique(vy, vy + tf) - vy;
    		
    		fr(i, 0, n) //对所有左右边建权,左边1 右边-1 
    		{
    			arr[rf++] = node( pot[i].a, ret(pot[i].b), ret(pot[i].d), 1 ); 
    			arr[rf++] = node( pot[i].c, ret(pot[i].b), ret(pot[i].d), -1 );
    		}
    		
    		sort(arr, arr + rf, cmp); //对所有左右边按x值递增排序
    		
    		build(1, 1, tf - 1);
    		 
    		ld ans = 0.0;
    		
    		for(int i = 0; i < rf;)
    		{
    			int j = i;
    			while(j < rf && arr[j].x == arr[i].x) //找到一段x值相同的边并暴力合并 
    				change(1, arr[j].y1, arr[j].y2 - 1, arr[j].ok), ++j;
    			if(j != rf)	ans += (t[1].len * (arr[j].x - arr[i].x)); //计算当前扫描线(已经更新在t[1].len了)和下一个x值
    			i = j;
    		}
    		printf("Test case #%d
    ", ttt++);
    		printf("Total explored area: %.2f
    ", ans);
    		printf("
    "); 
    	}
    
        return 0;
    }

    暴力维护 

    int tf = 0, rf = 0;
    
    struct rec
    {
    	ld a, b, c, d;
    }pot[MAXN] = {0};
    
    struct node
    {
    	ld x;
    	int y1, y2, ok;
    	node(){}
    	node(ld a, int b, int c, int d)
    	{ x = a, y1 = b, y2 = c, ok = d; }
    }arr[MAXN];
    
    bool cmp(node a, node b)
    {
    	if(a.x != b.x)
    		return a.x < b.x;
    	else return a.ok < b.ok;
    }
    
    int used[MAXN] = {0}; //记录当前段在矩形内出现次数 
    ld vy[MAXN] = {0};
    int ret(ld x) { return lower_bound(vy, vy + tf, x) - vy; }
    
    void opt(node x)
    {
    	if(x.ok == -1) fr(i, x.y1, x.y2) --used[i];
    	else fr(i, x.y1, x.y2) ++used[i];
    }
    
    ld cal()
    {
    	ld sum = 0.0;
    	fr(i, 0, tf) if(used[i]) sum += (vy[i + 1] - vy[i]);
    	return sum;
    }
    
    int main()
    { 
    	int n, ttt = 1;
    
    	while(scanf("%d", &n) && n)
    	{
    		memset(used, 0, sizeof(used));
    		tf = 0, rf = 0;
    		fr(i, 0, n)
    		{ 
    			scanf("%lf%lf%lf%lf", &pot[i].a, &pot[i].b, &pot[i].c, &pot[i].d);
    			vy[tf++] = pot[i].b; vy[tf++] = pot[i].d;
    		}
    		sort(vy, vy + tf); //离散所有y值 
    		tf = unique(vy, vy + tf) - vy;
    		fr(i, 0, n) //对所有左右边建权,左边1 右边-1 
    		{
    			arr[rf++] = node( pot[i].a, ret(pot[i].b), ret(pot[i].d), 1 ); 
    			arr[rf++] = node( pot[i].c, ret(pot[i].b), ret(pot[i].d), -1 );
    		}
    		sort(arr, arr + rf, cmp); //对所有左右边按x值递增排序 
    		ld ans = 0.0;
    		for(int i = 0; i < rf;)
    		{
    			int j = i;
    			while(j < rf && arr[j].x == arr[i].x) //找到一段x值相同的边并暴力合并 
    				opt(arr[j]), ++j;
    			if(j != rf)	ans += (cal() * (arr[j].x - arr[i].x)); //计算当前扫描线和下一个x值
    			i = j;
    		}
    		printf("Test case #%d
    ", ttt++);
    		printf("Total explored area: %.2f
    ", ans);
    		printf("
    "); 
    	}
    
        return 0;
    }
    

    二、扫描线求边长为k的矩形覆盖最大点数


    题目链接:https://cometoj.com/contest/59/problem/D?problem_id=2713

    思路, 将每个点变成左下角x,y 右上角x + k, y + k的矩形,若两个矩形有交点, 则证明在交点这个地方框一个k*k的矩形必然可以覆盖这两个点。则最大矩形覆盖就是交点个数最多的点。

    扔按上面矩形面积并跑扫描线,先加边后删边(因为边缘可以覆盖,则当前x值不删边时答案更优)

    将y轴离散为点,线段树区间lazy加和求极值即为答案。

    对于样例

    4 2
    1 1
    3 1
    3 4
    2 2 有下图更新方式

    代码:

    /*
        Zeolim - An AC a day keeps the bug away
    */
     
    //#pragma GCC optimize(2)
    //#pragma GCC ("-W1,--stack=128000000")
    #include <bits/stdc++.h> 
    using namespace std;
    #define mp(x, y) make_pair(x, y)
    #define fr(x, y, z) for(int x = y; x < z; ++x)
    typedef long long ll;
    typedef unsigned long long ull;
    typedef double ld;
    typedef std::pair <int, int> pii;
    typedef std::vector <int> vi;
    //typedef __int128 ill;
    const ld PI = acos(-1.0);
    const ld E = exp(1.0);
    const ll INF = 0x3f3f3f3f3f3f3f3f;
    const ll MOD = 386910137;
    const ull P = 13331; 
    const int MAXN = 1e6 + 10;
    int tf = 0, rf = 0;
    
    struct rec
    {
    	ld a, b, c, d;
    }pot[MAXN] = {0};
    
    struct node
    {
    	ld x;
    	int y1, y2, ok;
    	node(){}
    	node(ld a, int b, int c, int d)
    	{ x = a, y1 = b, y2 = c, ok = d; }
    }arr[MAXN];
    
    bool cmp(node a, node b)
    {
    	if(a.x != b.x)
    		return a.x < b.x;
    	else return a.ok > b.ok;
    }
    
    struct sgt
    {
    	int l, r, cnt, add, max; //½Úµãl = r ´ú±íµ±Ç°É¨ÃèÏßÉϵãl³öÏֵĴÎÊý
    	#define ls(x) t[now * 2]
    	#define rs(x) t[now * 2 + 1]
    }t[MAXN << 2];
    
    int vy[MAXN] = {0};
    int ret(ld x) { return lower_bound(vy, vy + tf, x) - vy + 1; } //Ê÷ÊÇ´Ó1¿ªÊ¼½¨µÄ£¬ ÀëÉ¢Ò²´Ó1ÀëÉ¢ 
    double raw(int x) {return vy[x - 1]; }
    
    void build(int now, int l, int r)
    {
    	t[now].l = l, t[now].r = r;
    	t[now].cnt = t[now].add = t[now].max = 0;
    	if(l == r) return ;
    	int mid = (l + r) / 2;
    	build(now * 2, l, mid);
    	build(now * 2 + 1, mid + 1, r);
    }
    
    void push(int now) //ÏÂÍÆlazy
    {
    	if(t[now].add)
    	{
    		ls(now).max += t[now].add;
    		rs(now).max += t[now].add;
    		ls(now).add += t[now].add;
    		rs(now).add += t[now].add;
    		t[now].add = 0;
    	}
    }
    
    void change(int now, int l, int r, int v)
    {
    	if(t[now].l >= l && t[now].r <= r)  //ά»¤Çø¼ä×î´óÖµ 
    	{	
    		t[now].max += v; //ÍêÈ«°üº¬µÄ¶ÎÖ±½Ó¼ÆËã+lazy 
    		t[now].add += v;  
    		return ;
    	}
    	push(now);
    	int mid = (t[now].l + t[now].r) / 2;
    	if(l <= mid) change(now * 2, l, r, v);
    	if(r > mid) change(now * 2 + 1, l, r, v);
    	t[now].max = max(ls(now).max, rs(now).max);
    }
    
    int main()
    { 
    	ios::sync_with_stdio(0);
    	cin.tie(0); cout.tie(0);
    	
    	int n, k, ttt = 1;
    
    	cin >> n >> k;
    
    	tf = 0, rf = 0;
    	fr(i, 0, n)
    	{ 
    		cin >> pot[i].a >> pot[i].b;
    		pot[i].c = pot[i].a + k;
    		pot[i].d = pot[i].b + k;
    		vy[tf++] = pot[i].b; vy[tf++] = pot[i].d;
    	}
    	
    	sort(vy, vy + tf); //ÀëÉ¢ËùÓÐyÖµ 
    	tf = unique(vy, vy + tf) - vy;
    	
    	fr(i, 0, n) //¶ÔËùÓÐ×óÓұ߽¨È¨£¬×ó±ß1 ÓÒ±ß-1 
    	{
    		arr[rf++] = node( pot[i].a, ret(pot[i].b), ret(pot[i].d), 1 ); 
    		arr[rf++] = node( pot[i].c, ret(pot[i].b), ret(pot[i].d), -1 );
    	}
    	
    	sort(arr, arr + rf, cmp); //¶ÔËùÓÐ×óÓұ߰´xÖµµÝÔöÅÅÐò
    	
    	build(1, 1, tf);
    	 
    	int ans = 0;
    	
    	for(int i = 0; i < rf; ++i)
    	{
    			change(1, arr[i].y1, arr[i].y2, arr[i].ok);
    		ans = max(ans, t[1].max ); //¼ÆË㵱ǰɨÃèÏßÄÚ×î´óµã¸²¸ÇÊý 
    	}
    	
    	cout << ans << '
    ';
    
        return 0;
    }
    
    /*
    4
    10 10 20 20
    15 15 30 25
    25 10 35 20
    25 25 35 30
    */
  • 相关阅读:
    mysql清空表中内容
    Proteus元件查找
    HDG12864F1 proteus仿真取模【PCtoLCD完美版】
    OLED取模(汉字加图片)
    Failed to connect to ESP8266: Timed out waiting for packet header
    AD常用快捷键
    Authentication method 'caching_sha2_password' not supported by any of the available plugins.
    spark阶段学习总结(三)
    spark阶段学习总结(一)
    spark阶段学习总结(二)
  • 原文地址:https://www.cnblogs.com/zeolim/p/12270351.html
Copyright © 2011-2022 走看看