一、扫描线求矩形面积并
如图所示 总矩形面积并等于每两根蓝线间的面积和。
考虑将矩形按x轴排序,只需要知道每个离散的x点上被矩形覆盖的长度, 和下一条扫描线的x轴可知之间面积为
所以只需要维护每一条扫描线的长度即可,线段树 暴力维护
题目链接 https://vjudge.net/problem/POJ-1151
线段树维护
const int MAXN = 1e6 + 10;
int tf = 0, rf = 0;
struct rec
{
ld a, b, c, d;
}pot[MAXN] = {0};
struct node
{
ld x;
int y1, y2, ok;
node(){}
node(ld a, int b, int c, int d)
{ x = a, y1 = b, y2 = c, ok = d; }
}arr[MAXN];
bool cmp(node a, node b)
{
if(a.x != b.x)
return a.x < b.x;
else return a.ok > b.ok;
}
struct sgt
{
int l, r, cnt; //节点l = r = 1 代表以1开头2结尾的段的扫描长度 l = 1, r = 2代表1开头3结尾的段的扫描长度
double len; //cnt代表当前段内的标记次数, 若大于1则不用下探
}t[MAXN << 2];
ld vy[MAXN] = {0};
int ret(ld x) { return lower_bound(vy, vy + tf, x) - vy + 1; } //树是从1开始建的, 离散也从1离散
double raw(int x) {return vy[x - 1]; }
void build(int now, int l, int r)
{
t[now].l = l, t[now].r = r;
t[now].len = 0, t[now].cnt = 0;
if(l == r) return ;
int mid = (l + r) / 2;
build(now * 2, l, mid);
build(now * 2 + 1, mid + 1, r);
}
void push(int now)
{
if(t[now].cnt) //如果当前段被完全覆盖 则长度为len(r + 1) - len(l)
t[now].len = raw(t[now].r + 1) - raw( t[now].l);
else //否则合并
t[now].len = t[now * 2].len + t[now * 2 + 1].len;
}
void change(int now, int l, int r, int v)
{
if(t[now].l >= l && t[now].r <= r)
{
t[now].cnt += v; //完全包含的段直接标记即可
push(now);
return ;
}
int mid = (t[now].l + t[now].r) / 2;
if(l <= mid) change(now * 2, l, r, v);
if(r > mid) change(now * 2 + 1, l, r, v);
push(now);
}
int main()
{
int n, ttt = 1;
while(scanf("%d", &n) && n)
{
tf = 0, rf = 0;
fr(i, 0, n)
{
scanf("%lf%lf%lf%lf", &pot[i].a, &pot[i].b, &pot[i].c, &pot[i].d);
vy[tf++] = pot[i].b; vy[tf++] = pot[i].d;
}
sort(vy, vy + tf); //离散所有y值
tf = unique(vy, vy + tf) - vy;
fr(i, 0, n) //对所有左右边建权,左边1 右边-1
{
arr[rf++] = node( pot[i].a, ret(pot[i].b), ret(pot[i].d), 1 );
arr[rf++] = node( pot[i].c, ret(pot[i].b), ret(pot[i].d), -1 );
}
sort(arr, arr + rf, cmp); //对所有左右边按x值递增排序
build(1, 1, tf - 1);
ld ans = 0.0;
for(int i = 0; i < rf;)
{
int j = i;
while(j < rf && arr[j].x == arr[i].x) //找到一段x值相同的边并暴力合并
change(1, arr[j].y1, arr[j].y2 - 1, arr[j].ok), ++j;
if(j != rf) ans += (t[1].len * (arr[j].x - arr[i].x)); //计算当前扫描线(已经更新在t[1].len了)和下一个x值
i = j;
}
printf("Test case #%d
", ttt++);
printf("Total explored area: %.2f
", ans);
printf("
");
}
return 0;
}
暴力维护
int tf = 0, rf = 0;
struct rec
{
ld a, b, c, d;
}pot[MAXN] = {0};
struct node
{
ld x;
int y1, y2, ok;
node(){}
node(ld a, int b, int c, int d)
{ x = a, y1 = b, y2 = c, ok = d; }
}arr[MAXN];
bool cmp(node a, node b)
{
if(a.x != b.x)
return a.x < b.x;
else return a.ok < b.ok;
}
int used[MAXN] = {0}; //记录当前段在矩形内出现次数
ld vy[MAXN] = {0};
int ret(ld x) { return lower_bound(vy, vy + tf, x) - vy; }
void opt(node x)
{
if(x.ok == -1) fr(i, x.y1, x.y2) --used[i];
else fr(i, x.y1, x.y2) ++used[i];
}
ld cal()
{
ld sum = 0.0;
fr(i, 0, tf) if(used[i]) sum += (vy[i + 1] - vy[i]);
return sum;
}
int main()
{
int n, ttt = 1;
while(scanf("%d", &n) && n)
{
memset(used, 0, sizeof(used));
tf = 0, rf = 0;
fr(i, 0, n)
{
scanf("%lf%lf%lf%lf", &pot[i].a, &pot[i].b, &pot[i].c, &pot[i].d);
vy[tf++] = pot[i].b; vy[tf++] = pot[i].d;
}
sort(vy, vy + tf); //离散所有y值
tf = unique(vy, vy + tf) - vy;
fr(i, 0, n) //对所有左右边建权,左边1 右边-1
{
arr[rf++] = node( pot[i].a, ret(pot[i].b), ret(pot[i].d), 1 );
arr[rf++] = node( pot[i].c, ret(pot[i].b), ret(pot[i].d), -1 );
}
sort(arr, arr + rf, cmp); //对所有左右边按x值递增排序
ld ans = 0.0;
for(int i = 0; i < rf;)
{
int j = i;
while(j < rf && arr[j].x == arr[i].x) //找到一段x值相同的边并暴力合并
opt(arr[j]), ++j;
if(j != rf) ans += (cal() * (arr[j].x - arr[i].x)); //计算当前扫描线和下一个x值
i = j;
}
printf("Test case #%d
", ttt++);
printf("Total explored area: %.2f
", ans);
printf("
");
}
return 0;
}
二、扫描线求边长为k的矩形覆盖最大点数
题目链接:https://cometoj.com/contest/59/problem/D?problem_id=2713
思路, 将每个点变成左下角 右上角的矩形,若两个矩形有交点, 则证明在交点这个地方框一个的矩形必然可以覆盖这两个点。则最大矩形覆盖就是交点个数最多的点。
扔按上面矩形面积并跑扫描线,先加边后删边(因为边缘可以覆盖,则当前x值不删边时答案更优)
将y轴离散为点,线段树区间lazy加和求极值即为答案。
对于样例
4 2
1 1
3 1
3 4
2 2 有下图更新方式
代码:
/*
Zeolim - An AC a day keeps the bug away
*/
//#pragma GCC optimize(2)
//#pragma GCC ("-W1,--stack=128000000")
#include <bits/stdc++.h>
using namespace std;
#define mp(x, y) make_pair(x, y)
#define fr(x, y, z) for(int x = y; x < z; ++x)
typedef long long ll;
typedef unsigned long long ull;
typedef double ld;
typedef std::pair <int, int> pii;
typedef std::vector <int> vi;
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MOD = 386910137;
const ull P = 13331;
const int MAXN = 1e6 + 10;
int tf = 0, rf = 0;
struct rec
{
ld a, b, c, d;
}pot[MAXN] = {0};
struct node
{
ld x;
int y1, y2, ok;
node(){}
node(ld a, int b, int c, int d)
{ x = a, y1 = b, y2 = c, ok = d; }
}arr[MAXN];
bool cmp(node a, node b)
{
if(a.x != b.x)
return a.x < b.x;
else return a.ok > b.ok;
}
struct sgt
{
int l, r, cnt, add, max; //½Úµãl = r ´ú±íµ±Ç°É¨ÃèÏßÉϵãl³öÏֵĴÎÊý
#define ls(x) t[now * 2]
#define rs(x) t[now * 2 + 1]
}t[MAXN << 2];
int vy[MAXN] = {0};
int ret(ld x) { return lower_bound(vy, vy + tf, x) - vy + 1; } //Ê÷ÊÇ´Ó1¿ªÊ¼½¨µÄ£¬ ÀëÉ¢Ò²´Ó1ÀëÉ¢
double raw(int x) {return vy[x - 1]; }
void build(int now, int l, int r)
{
t[now].l = l, t[now].r = r;
t[now].cnt = t[now].add = t[now].max = 0;
if(l == r) return ;
int mid = (l + r) / 2;
build(now * 2, l, mid);
build(now * 2 + 1, mid + 1, r);
}
void push(int now) //ÏÂÍÆlazy
{
if(t[now].add)
{
ls(now).max += t[now].add;
rs(now).max += t[now].add;
ls(now).add += t[now].add;
rs(now).add += t[now].add;
t[now].add = 0;
}
}
void change(int now, int l, int r, int v)
{
if(t[now].l >= l && t[now].r <= r) //ά»¤Çø¼ä×î´óÖµ
{
t[now].max += v; //ÍêÈ«°üº¬µÄ¶ÎÖ±½Ó¼ÆËã+lazy
t[now].add += v;
return ;
}
push(now);
int mid = (t[now].l + t[now].r) / 2;
if(l <= mid) change(now * 2, l, r, v);
if(r > mid) change(now * 2 + 1, l, r, v);
t[now].max = max(ls(now).max, rs(now).max);
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
int n, k, ttt = 1;
cin >> n >> k;
tf = 0, rf = 0;
fr(i, 0, n)
{
cin >> pot[i].a >> pot[i].b;
pot[i].c = pot[i].a + k;
pot[i].d = pot[i].b + k;
vy[tf++] = pot[i].b; vy[tf++] = pot[i].d;
}
sort(vy, vy + tf); //ÀëÉ¢ËùÓÐyÖµ
tf = unique(vy, vy + tf) - vy;
fr(i, 0, n) //¶ÔËùÓÐ×óÓұ߽¨È¨£¬×ó±ß1 ÓÒ±ß-1
{
arr[rf++] = node( pot[i].a, ret(pot[i].b), ret(pot[i].d), 1 );
arr[rf++] = node( pot[i].c, ret(pot[i].b), ret(pot[i].d), -1 );
}
sort(arr, arr + rf, cmp); //¶ÔËùÓÐ×óÓұ߰´xÖµµÝÔöÅÅÐò
build(1, 1, tf);
int ans = 0;
for(int i = 0; i < rf; ++i)
{
change(1, arr[i].y1, arr[i].y2, arr[i].ok);
ans = max(ans, t[1].max ); //¼ÆË㵱ǰɨÃèÏßÄÚ×î´óµã¸²¸ÇÊý
}
cout << ans << '
';
return 0;
}
/*
4
10 10 20 20
15 15 30 25
25 10 35 20
25 25 35 30
*/