1.gcd
ll gcd(ll a, ll b)
{
return b ? gcd(b, a % b) : a;
}
2.扩展gcd )extend great common divisor
ll exgcd(ll l, ll r, ll &x, ll &y)
{
if(r == 0)
{
x = 1, y = 0;
return l;
}
else
{
ll d = exgcd(r, l % r, y, x);
y -= l / r * x;
return d;
}
}
3.求a关于m的乘法逆元
ll mod_inverse(ll a,ll m)
{
ll x, y;
if(exgcd(a, m, x, y) == 1) //ax+my=1
return (x % m + m) % m;
return -1; //不存在
}
补充:求逆元还可以用
ans=abmodm=(amod(m⋅b))/b
4.快速幂quick power
ll qpow(ll a, ll b, ll m)
{
ll ans = 1;
ll k = a % mod;
while(b)
{
if(b & 1)
ans = ans * k % m;
k = k * k % m;
b >>= 1;
}
return ans;
}
5.快速乘,直接乘会爆ll时需要它,也叫二分乘法。
ll qmul(ll a, ll b, ll m)
{
ll ans = 0;
ll k = a;
ll f = 1;//f是用来存负号的
if(k < 0)
{
f = -1;
k = -k;
}
if(b < 0)
{
f *= -1;
b = -b;
}
while(b)
{
if(b & 1)
ans = (ans + k) % m;
k = (k + k) % m;
b >>= 1;
}
return ans * f;
}
6.中国剩余定理CRT (x=ai mod mi)
ll china(ll n, ll *a,ll *m) {
ll M=1,y,x=0,d;
for(ll i = 1; i <= n; i++) M *= m[i];
for(ll i = 1; i <= n; i++) {
ll w = M /m[i];
exgcd(m[i], w, d, y);//m[i]*d+w*y=1
x = (x + y*w*a[i]) % M;
}
return (x+M)%M;
}
7.筛素数,全局:int cnt,prime[N],p[N];
void isprime()
{
cnt = 0;
memset(prime,true,sizeof(prime));
for(int i=2; i<N; i++)
{
if(prime[i])
{
p[cnt++] = i;
for(int j=i+i; j<N; j+=i)
prime[j] = false;
}
}
}
8.快速计算逆元
补充:>>关于快速算逆元的递推式的证明<<
void inverse(){
inv[1] = 1;
for(int i=2;i<N;i++)
{
if(i >= M) break;
inv[i] = (M-M/i)*inv[M%i]%M;
}
}
9.组合数取模
n和m 10^5时,预处理出逆元和阶乘
ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
ll C(ll a,ll b){
if(b>a)return 0;
return fac[a]*inv[b]%M*inv[a-b]%M;
}
void init(){//快速计算阶乘的逆元
for(int i=2;i<N;i++){
fac[i]=fac[i-1]*i%M;
f[i]=(M-M/i)*f[M%i]%M;
inv[i]=inv[i-1]*f[i]%M;
}
}
n较大10^9,但是m较小10^5时,
ll C(ll n,ll m){
if(m>n)return 0;
ll ans=1;
for(int i=1;i<=m;i++)
ans=ans*(n-i+1)%M*qpow(i,M-2,M)%M;
return ans;
}
n和m特别大10^18时但是p较小10^5时用lucas
10.Lucas大组合取模
#define N 100005
#define M 100007
ll n,m,fac[N]={1};
ll C(ll n,ll m){
if(m>n)return 0;
return fac[n]*qpow(fac[m],M-2,M)%M*qpow(fac[n-m],M-2,M)%M;//费马小定理求逆元
}
ll lucas(ll n,ll m){
if(!m)return 1;
return(C(n%M,m%M)*lucas(n/M,m/M))%M;
}
void init(){
for(int i=1;i<=M;i++)
fac[i]=fac[i-1]*i%M;
}
PY版CRT
def gcd(a, b):
if(b == 0):
return a
else:
return gcd(b, a % b)
def ex_gcd(dividend, divisor):
if 0 == divisor:
return 1, 0, dividend
x2, y2, remainder = ex_gcd(divisor, dividend % divisor)
temp = x2
x1 = y2
y1 = temp - int(dividend // divisor) * y2
return x1, y1, remainder
rs1, rs2 = input().split()
n = int(rs1)
mx = int(rs2)
ai = []
bi = []
def ex_crt():
M = bi[0]
ans = ai[0]
for i in range(1, n):
a = M
b = bi[i]
c = (ai[i] - ans % b + b) % b
g = gcd(a, b)
x = ex_gcd(a, b)[0]
bg = b // g
if (c % g != 0):
return -1
x = (x * (c // g) % bg)
ans = ans + x * M
M = M * bg
ans = (ans % M + M) % M
ans = (ans % M + M) % M;
return ans
for i in range(n):
s1, s2 = input().split()
bi.append(int(s1))
ai.append(int(s2))
res = ex_crt()
if(res == -1):
print("he was definitely lying")
elif(res <= mx):
print(res)
else:
print("he was probably lying")