zoukankan      html  css  js  c++  java
  • Bookshelf 2

    Farmer John recently bought another bookshelf for the cow library, but the shelf is getting filled up quite quickly, and now the only available space is at the top.

    FJ has N cows (1 ≤ N ≤ 20) each with some height of Hi (1 ≤ Hi ≤ 1,000,000 - these are very tall cows). The bookshelf has a height of B (1 ≤ B ≤ S, where S is the sum of the heights of all cows).

    To reach the top of the bookshelf, one or more of the cows can stand on top of each other in a stack, so that their total height is the sum of each of their individual heights. This total height must be no less than the height of the bookshelf in order for the cows to reach the top.

    Since a taller stack of cows than necessary can be dangerous, your job is to find the set of cows that produces a stack of the smallest height possible such that the stack can reach the bookshelf. Your program should print the minimal 'excess' height between the optimal stack of cows and the bookshelf.

    Input

    * Line 1: Two space-separated integers: N and B
    * Lines 2..N+1: Line i+1 contains a single integer: Hi

    Output

    * Line 1: A single integer representing the (non-negative) difference between the total height of the optimal set of cows and the height of the shelf.

    Sample Input

    5 16
    3
    1
    3
    5
    6

    Sample Output

    1
    大意:求N个数加起来离M最近的值,即背包问题,但是容量不知道,即把比最大的所有可能性都保存下来,从最小开始,如果超过,就是那个值
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;
      int H[1000005],w[25];
    int main()
    {
    
    
        int n ,m, sum;
        sum = 0;
        while(~scanf("%d%d", &n, &m)){
                memset(w, 0, sizeof(w));
    
            for(int i = 1; i <= n; i++){
                scanf("%d", &w[i]);
                sum += w[i];
            }
            for(int i = 0; i <=sum ;i++)
                H[i] = 0;
    
    
            for(int i = 1;i <= n; i++){
                for(int j = sum ; j >= w[i]; j--){
                     H[j] = max(H[j], H[j-w[i]] + w[i] );
                }
            }
            for(int i = 1; i <= sum; i++){
                if(H[i] >= m){
                    printf("%d
    ", H[i] - m);
                    break;
                }
            }
        }
            return 0;
    }
    View Code
     
  • 相关阅读:
    java IO选择流的原则及其与IO流相关类的关系
    图形用户界面(graphical user interface)
    泛型
    流、文件及基于文本的应用
    java线程
    多态与方法调用
    在eclipse中使用javap工具反汇编
    java类的访问控制符与其他几个特殊修饰符的总结
    java中几个特殊的类
    @property在内存管理中的参数问题
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4313200.html
Copyright © 2011-2022 走看看