zoukankan      html  css  js  c++  java
  • LCS——最长公共子序列——Common Subsequence

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    大意最长公共子序列
    就如果相同那么dp[i][j] = dp[i-1][j-1] + 1,否则就取max(dp[i][j-1],dp[i-1][j])
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int dp[1000][1000];
    int main(){
        char s1[1000],s2[1000];
        char t;
        while(~scanf("%s%s",s1,s2)){
                memset(dp,0,sizeof(dp));
           int    n1 = strlen(s1);
           int    n2 = strlen(s2);
              for(int i = 1 ; i <= n1;i++){
                for(int j = 1;j <= n2; j++){
                    if(s1[i-1] == s2[j-1]){
                        dp[i][j]=dp[i-1][j-1]+1;
                    }
                    else dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
                }
              }
              printf("%d
    ",dp[n1][n2]);
        }
        return 0;
    }
    View Code
    
    
  • 相关阅读:
    原生js 实现 map
    前端安全学习
    前端性能优化
    前端的跨域请求方法使用场景及各自的局限性
    7-7 12-24小时制(15 分)
    7-4 BCD解密(10 分)
    7-2 然后是几点(15 分)
    厘米换算英尺英寸
    鸡兔同笼
    数组:经典计数
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4321833.html
Copyright © 2011-2022 走看看