Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
/* a[i]从0到n-1 先求出原来序列的逆序对 假设先放进一个数a[i],那么就用线段树查找是否在里面有大于a[i]的数如果有就++,update 对于已经求出的逆序对,因为序列所有数字排序之后都是0-n而逆序对所有的情况都在这里面,假设ans为逆序对。b[1]为第一个数对于后面所有数的逆序数,那么如果把这个数放到后面去就少了b[1],多了n-1-b[1],而这个b肯定在1~n-1范围内 */ #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const int MAX = 50100; int a[MAX]; int sum[MAX<<2]; void build(int rt, int l, int r) { sum[rt] = 0; if(l == r){ return; } int mid = (l + r) >> 1; build(rt*2, l, mid); build(rt*2+1, mid+1, r); } void update(int rt, int l, int r, int L) { if(l == r){ sum[rt]++; return; } int mid = (l + r) >> 1; if(L <= mid) update(rt*2, l, mid, L); else update(rt*2+1, mid+1, r, L); sum[rt] = sum[rt*2] + sum[rt*2+1]; } int query(int rt, int l, int r, int L, int R) { if(L <= l && R >= r) return sum[rt]; int mid = (l + r) >> 1; int ret = 0; if(L <= mid) ret += query(rt*2, l, mid, L, R); if(R >mid) ret += query(rt*2+1, mid+1, r, L, R); sum[rt] = sum[rt*2] + sum[rt*2+1]; return ret; } int main() { int n; while(scanf("%d", &n)!=EOF){ build(1, 0, n-1); int ans = 0; for(int i = 1; i <= n ;i++){ scanf("%d", &a[i]); ans = ans + query(1, 0, n-1, a[i], n-1); update(1, 0, n-1, a[i]); } int min1 = ans; for(int i = 1; i <= n ; i++){ ans += n - 2*a[i] - 1; min1 = min(min1, ans); } printf("%d ", min1); } return 0; }